232 lines
5.1 KiB
TeX
232 lines
5.1 KiB
TeX
|
\documentclass[12pt]{article}
|
||
|
\usepackage{ntnu}
|
||
|
\usepackage{ntnu-math}
|
||
|
\usepackage{ntnu-code}
|
||
|
|
||
|
\author{Øystein Tveit}
|
||
|
\title{MA0301 Exercise 6}
|
||
|
|
||
|
\usepackage{amsthm}
|
||
|
\usepackage{mathabx}
|
||
|
|
||
|
\begin{document}
|
||
|
\ntnuTitle{}
|
||
|
\break{}
|
||
|
|
||
|
\begin{excs}
|
||
|
\exc{}
|
||
|
|
||
|
\begin{subexcs}
|
||
|
|
||
|
\subexc{}
|
||
|
|
||
|
In order to show that this is a partial order, the relation has to be reflexive, antisymmetric and transitive
|
||
|
|
||
|
However, it is not antisymmetric because
|
||
|
|
||
|
\[ 4-2 \bmod 2 = 0 \wedge 2 - 4 \bmod 2 = 0 \]
|
||
|
|
||
|
\subexc{}
|
||
|
|
||
|
In order to show that this is a partial order, the relation has to be reflexive, antisymmetric and transitive
|
||
|
|
||
|
However, it is not antisymmetric because
|
||
|
|
||
|
\[ (1,2)R(1,3) \wedge (1,3)R(1,2) \wedge (1,2) \neq (1,3) \]
|
||
|
|
||
|
\end{subexcs}
|
||
|
|
||
|
\exc{}
|
||
|
|
||
|
\begin{figure}[H]
|
||
|
\begin{mgraphbox}[width=5cm]
|
||
|
\center
|
||
|
\begin{tikzpicture}[scale=1]
|
||
|
\tikzset{every node/.style={shape=circle,draw,inner sep=2pt}}
|
||
|
|
||
|
\node (a) at (0,0) {$1$};
|
||
|
\node (b) at (1,1) {$2$};
|
||
|
\node (c) at (-1,1) {$3$};
|
||
|
\node (d) at (0,2) {$6$};
|
||
|
\node (e) at (-2,2) {$9$};
|
||
|
\node (f) at (-1,3) {$18$};
|
||
|
|
||
|
\draw (a) -- (b) -- (d) -- (f) -- (e) -- (c) -- (a);
|
||
|
\draw (c) -- (d);
|
||
|
\end{tikzpicture}
|
||
|
\end{mgraphbox}
|
||
|
\caption{Hasse diagram of $R$}
|
||
|
\end{figure}
|
||
|
|
||
|
\exc{}
|
||
|
|
||
|
\begin{subexcs}
|
||
|
|
||
|
\subexc{}
|
||
|
|
||
|
In order to show that this is a partial order, the relation has to be reflexive, antisymmetric and transitive
|
||
|
|
||
|
Reflexive:
|
||
|
|
||
|
\begin{gather*}
|
||
|
(a < a) \vee ((a = a) \wedge b \leq b) \\
|
||
|
F \vee (T \wedge T) \\
|
||
|
F \vee T \\
|
||
|
T \\
|
||
|
\end{gather*}
|
||
|
|
||
|
Antisymmetric:
|
||
|
|
||
|
Case $i$)
|
||
|
\begin{align*}
|
||
|
a < c \Rightarrow a \neq c \wedge \neg (a < a)
|
||
|
\end{align*}
|
||
|
|
||
|
Case $ii$)
|
||
|
\begin{gather*}
|
||
|
(a,b) \neq (c,d) \wedge (a=c) \wedge (b \leq d) \Rightarrow b \neq d \Rightarrow b < d \\
|
||
|
\therefore (a = c) \wedge (b \leq d) \Rightarrow \neg (a < c) \wedge \neg (d \leq b) \\
|
||
|
\end{gather*}
|
||
|
|
||
|
Transitive:
|
||
|
|
||
|
\[ (a,b)R(c,d) \wedge (c,d)R(e,f) \Rightarrow (a,b)R(e,f) \]
|
||
|
|
||
|
This will be a proof by cases. In each case, I'm going to assume only one of the expressions in $R$ turned out true, and show that it means that at least one of the expressions will be true as a result.
|
||
|
|
||
|
Case $i$ and $i$)
|
||
|
\[ (a < c) \wedge (c < e) \Rightarrow a < e \]
|
||
|
|
||
|
Case $i$ and $ii$)
|
||
|
\[ (a < c) \wedge (c=e \wedge d \leq f) \Rightarrow a < e \]
|
||
|
|
||
|
Case $ii$ and $i$)
|
||
|
\[ (a = c \wedge b \leq d) \wedge (c < e) \Rightarrow a < e \]
|
||
|
|
||
|
Case $ii$ and $ii$)
|
||
|
\[ (a = c \wedge b \leq d) \wedge (c=e \wedge d \leq f) \Rightarrow (a=f \wedge b \leq f) \]
|
||
|
|
||
|
\subexc{}
|
||
|
|
||
|
\begin{figure}[H]
|
||
|
\begin{mgraphbox}[width=5cm]
|
||
|
\center
|
||
|
\begin{tikzpicture}[scale=1]
|
||
|
\tikzset{every node/.style={shape=circle,draw,inner sep=2pt}}
|
||
|
|
||
|
\node (a) at (0,0) {$0,0$};
|
||
|
\node (b) at (0,1) {$0,1$};
|
||
|
\node (c) at (0,2) {$1,0$};
|
||
|
\node (d) at (0,3) {$1,1$};
|
||
|
|
||
|
\draw (a) -- (b) -- (c) -- (d);
|
||
|
\end{tikzpicture}
|
||
|
\end{mgraphbox}
|
||
|
\caption{Hasse diagram of $R$}
|
||
|
\end{figure}
|
||
|
|
||
|
$(0,0)$ is the only minimal element and $(1,1)$ is the only maximal element in $R$.
|
||
|
|
||
|
\subexc{}
|
||
|
|
||
|
Since $R$ only has one minimal and one maximal element, it is a total order.
|
||
|
|
||
|
\end{subexcs}
|
||
|
|
||
|
\exc{}
|
||
|
|
||
|
\begin{subexcs}
|
||
|
|
||
|
\subexc{}
|
||
|
This is a function because x can be expressed in terms of y
|
||
|
|
||
|
Range of $f(\Z)$: $\{ x \mid \pm \sqrt{x-7} \in \Z \}$
|
||
|
|
||
|
\subexc{}
|
||
|
This is not a function because
|
||
|
|
||
|
\[ x = (\pm y)^2 \]
|
||
|
|
||
|
\subexc{}
|
||
|
This is a function because x can be expressed in terms of y
|
||
|
|
||
|
Range of $f(\R)$: $\R$
|
||
|
|
||
|
\subexc{}
|
||
|
This is not a function because
|
||
|
|
||
|
\[ x = \pm \sqrt{-y^2+1} \]
|
||
|
|
||
|
\end{subexcs}
|
||
|
|
||
|
\exc{}
|
||
|
|
||
|
\begin{subexcs}
|
||
|
\subexc{}
|
||
|
\[ f(x) = 2x - 3 \]
|
||
|
|
||
|
One to one: \vcheck
|
||
|
|
||
|
Onto: \xcheck
|
||
|
|
||
|
Range of $f(\Z)$: $\{ x \mid x \bmod 2 = 1 \}$
|
||
|
|
||
|
|
||
|
\subexc{}
|
||
|
\[ f(x) = x^2 \]
|
||
|
|
||
|
One to one: \xcheck
|
||
|
|
||
|
Onto: \xcheck
|
||
|
|
||
|
Range of $f(\Z)$: $\{ x \mid \sqrt{x} \in \Z \}$
|
||
|
|
||
|
\subexc{}
|
||
|
\[ f(x) = x^3+x \]
|
||
|
|
||
|
One to one: \vcheck
|
||
|
|
||
|
Onto: \xcheck
|
||
|
|
||
|
Range of $f(\Z)$: $\{ x \in f(\Z) \}$ \hspace*{2cm} \fbox{See message at ovsys}
|
||
|
\end{subexcs}
|
||
|
|
||
|
\exc{}
|
||
|
|
||
|
\begin{subexcs}
|
||
|
\subexc{}
|
||
|
\[ f(x) = 2x - 3 \]
|
||
|
|
||
|
One to one: \vcheck
|
||
|
|
||
|
Onto: \vcheck
|
||
|
|
||
|
Range of $f(\R)$: $\R$
|
||
|
|
||
|
|
||
|
\subexc{}
|
||
|
\[ f(x) = x^2 \]
|
||
|
|
||
|
One to one: \xcheck
|
||
|
|
||
|
Onto: \xcheck
|
||
|
|
||
|
Range of $f(\R)$: $\{ x \mid x \geq 0 \}$
|
||
|
|
||
|
\subexc{}
|
||
|
\[ f(x) = x^3+x \]
|
||
|
|
||
|
One to one: \vcheck
|
||
|
|
||
|
Onto: \vcheck
|
||
|
|
||
|
Range of $f(\R)$: $\R$
|
||
|
\end{subexcs}
|
||
|
|
||
|
|
||
|
\end{excs}
|
||
|
|
||
|
|
||
|
|
||
|
\end{document}
|