\[ \begin{cases} b_0 = 1 \\ b_1 = 2 \\ b_{n+1} = b_n + 2 \cdot b_{n-1} \end{cases} \] \begin{align*} b_2 &= b_1 + 2 \cdot b_{0} = 2 + 2 \cdot 1 = 4 \\ b_3 &= b_2 + 2 \cdot b_{1} = 4 + 2 \cdot 2 = 8 \\ b_4 &= b_3 + 2 \cdot b_{2} = 8 + 2 \cdot 4 = 16 \\ b_5 &= b_4 + 2 \cdot b_{3} = 16 + 2 \cdot 8 = 32 \\ b_6 &= b_5 + 2 \cdot b_{4} = 32 + 2 \cdot 16 = 64 \\ b_7 &= b_6 + 2 \cdot b_{5} = 64 + 2 \cdot 32 = 128 \end{align*} Jeg gjetter at $f(n) = 2^n$. \begin{align*} b_n + 2 \cdot b_{n-1} &= 2^n + 2 \cdot 2^{n-1} \\ &= 2^n + 2^n \\ &= 2 \cdot 2^{n} \\ &= 2^{n+1} \\ &= b_{n+1} \end{align*}