\begin{deloppgaver} \delo \begin{align*} cos(x) &= -1 \\ x &= acos(-1) \\ x &= \pm \pi + 2n\pi \end{align*} \begin{minipage}{0.42\textwidth} \begin{graphbox} \input{figures/4a.tex} \end{graphbox} \end{minipage} Ettersom forskjellen mellom $\pi$ og $-\pi$ er $2\pi$ som er et element i $2n\pi$, kan vi slÄ sammen svarene og si at \[ x = \pi + 2n\pi \] \delo \[cos(2x)=1-2sin^2(x)\] Vi substituerer $cos(2x)=cos^2(x)-sin^2(x)$ og $cos^2(x)+sin^2(x)=1$ \begin{align*} cos^2(x)-sin^2(x) &= cos^2(x)+sin^2(x) - 2sin^2(x) \\ cos^2(x) &= cos^2(x)+2sin^2(x) - 2sin^2(x) \\ cos^2(x) &= cos^2(x) \end{align*} \delo \[cos(\frac{\pi}{8})\] Vi bruker \[ sin(2a) = 2 sin(a)cos(a) \] Hvor $a = \frac{\pi}{8}$ \begin{align*} sin\left(\frac{\pi}{4}\right) &= 2sin\left(\frac{\pi}{8}\right)cos\left(\frac{\pi}{8}\right) \\[1em] cos\left(\frac{\pi}{8}\right) &= \frac{sin\left(\frac{\pi}{4}\right)}{2sin\left(\frac{\pi}{8}\right)} \\[1em] &= \frac{\frac{1}{\sqrt{2}}}{2sin\left(\frac{\pi}{8}\right)} \end{align*} \end{deloppgaver}