#import "@preview/physica:0.9.6": * == a) $ cases( 5y + 2y' + y'' + 3 & = 0, y(0) & = 1, y'(0) & = 4 ) $ we introduce the substitutions $y_1 = y$ and $y_2 = y'_1 = y$ such that we get $ 5y_1 + 2y_2 + y_2 ' + 3 = 0 \ => y_2 ' = y'' = -3 - 2y_2 - 5y_1 $ for the first equation. this yields an autonomous first-order system $ cases( y_1 ' = y_2, y_2 ' = -3 - 2y_2 - 5y_1 ) $ since there is no explicit $t$ on the right sides of the equations, i.e. the state of the system only relies on its current state. since we only use a step size of $h = 1$, we simply do $ y_(n + 1) = y_n + y'_n, $ so starting at $t = 0$ we get, using our initial values $ cases( y_1(0) = 1 quad #text(gray)[initial], y_2(0) = 4 quad #text(gray)[initial], y'_1(0) = y_2 (0) = 4, y'_2(0) = -3 - 2y_2(0) - 5y_1(0) = -16 ) $ which we can plug in to get our next values for $y_1$ and $y_2$ $ cases( y_1(1) = y_1(0) + y'_1(0) = 5, y_2(1) = -12, ) $ which concludes the first step in euler's method. == b) for $k = 0, 1, 2, 3$ $ cases( y + 3y'' + 4y^((3)) + sin(t) & = 3, y^((k))(0) & = 4 - k ) $ yields five equations. in this case, we can make yet more substitutions $ cases( y_0 & = y, y'_k & = y_(k+1) = y^((k+1)) ) $ such that $ & cases( y_0 + 3 y_2 + 4 y_3 + sin(t) = 3, y_k (0) = 4 - k ) \ => & cases( y'_0 = y_1, y'_1 = y_2, y'_2 = y_3, y'_3 = -1/4 (y_1 + 3y_3 + cos(t)) ) $ so starting at $t = 0$ with step size $h = 1$ we obtain $ y_0(0) = 4, quad y_1(0) = 3, quad y_2(0) = 2, quad y_3(0) = 1 $ and $ y'_0(0) = 3, quad y'_1(0) = 2, quad y'_2(0) = 1, quad y'_3(0) = -7 slash 4 $ such that after one step we have $ cases( y_0(1) = y_0(0) + y'_0(1) = 7, y_1(1) = 5, y_2(1) = 3, y_3(1) = -3 slash 4, ) $ == c) we have the system of ODEs $ cases( 2u + cos(u) sin(u') + 3(u'')^3 + ln(t + 1) & = 42, v^2 - 2v v' + (v'')^2 + v^((3)) & = t, u^((k))(0) & = k^2\, quad #$k = 0, 1$, v^((k))(1) & = 1\, quad #$k = 0, 1, 2$ ) $ this time we have two functions of $t$, $u$ and $v$. we can substitute as usual, then each one independently, since the equations don't overlap. let $ u^((k)) = u_k quad "and" quad v^((k)) = v_k $ such that we obtain the two disjoint systems $ & cases( 2u_0 + cos(u_0) sin(u_1) + 3(u_2)^3 + ln(t + 1) & = 42, u_k (0) & = k^2\, quad #$k = 0, 1$, ) \ and & cases( v_0^2 - 2v_0 v_1 + v_2^2 + v_3 & = t, v_k (1) & = 1\, quad #$k = 0, 1, 2$ ) $ which yields $ & cases( u'_0 = u_1, u'_1 = u_2, u'_2 = dv(, t) root(3, 1/3 (42 - 2u_0 - cos(u_0) sin(u_1) - ln(t + 1))) ) \ and & cases( v'_0 = v_1, v'_1 = v_2, v'_2 = v_3, v'_3 = dv(, t) (t - v_0^2 + 2 v_0 v_1 - v_2^2) ) $ combined with the initial conditions $ cases( u_0 (0) = 0, u_1 (0) = 1 ) quad and quad cases( v_0 (1) = 1, v_1 (1) = 1, v_2 (1) = 1 ) $ yields for step size $h = 1$ $ cases( u_0(1) & = u_0(0) + u_1(0) = 1, u_1(1) & = u_1(0) + u'_1(0) \ & = 1 + root(3, 1/3 (42 - 2 u_0(0) - cos(u_0(0)) sin(u_1(0)) - ln(0 + 1))) \ & = 1 + root(3, (42 - sin(1))/3) approx #{ calc.round(1 + calc.root((42 - calc.sin(1)) / 3, 3), digits: 4) } ) $ and $ cases( v_0(2) & = v_0(1) + v_1(1) = 2, v_1(2) & = v_1(1) + v_2(1) = 2, v_2(2) & = v_2(1) + v'_2(1) \ & = 1 + (1 - (v_0(1))^2 + 2 v_0(1) v_1(1) - (v_2(1))^2) \ & = 2 ) $ thus have I done a step of euler's method for the system of ODEs.