exercise 3

these are my solutions to the third exercise set of TMA4135.

there should be a python source code file attached to this
deliverable.

this document was created using typst.
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problem 1

a) & b)

using the trapezoidal rule we can estimate

1 1

e* dx, (2) Ipnlln]:= Jo In(x) dx

(1) Tomlexp] = J

0
let us solve both analytically first, starting with (1)
1
J edx=¢eXg=e—1
0
then (2)

1
J In(x) dx = [x In(x) — x]
0

= (Tn(1) = 1) = lim(tn(t) — 1

——1-0=-1,

where we used integration by parts and the fact that
limi_o+ tIn(t) = 0.

now we know what to expect from our estimates.

recall the trapezoidal rule

I[a,b][ﬂ ~ T[a,b][ﬂ =

in our case a = 0 and b = 1. for (1) with f(x) = e* we obtain
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%(eoJre]):

1 1+e
(0 +¢)=——,

To,1ylexp] =

which yields an error of

1+e_Ze—2—1—e_e—3
2 2 2

Epnlexp] =(e—1) —
for (2) with f(x) = In(x) we obtain
1 1

which yields an error of +oo0.

thus we can see that using the trapezoidal rule for In(x) diverges

. ‘o €3
and proves to be unwieldy. for exp(x) the actual error is == ~

—0.141.
c)

recall the upper bound of the error for the trapezoidal rule

3
LY max (o)

Brapilf] < 12 £clab]

which is for f = exp on [0, 1]
13

& = — ~
3 £E[ax]e | = 0.227

[Efo,1ylexp]| < 12

Our actual error magnitude is ‘67_3‘ = 3%6 ~ 0.141.

Since 0.141 < 0.227, the error bound is satisfied.
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d)

recall the error bound derived in the lecture,

MAaXge[a,b] ]f
[Epo,[f]] < J [x —xi| dx
S e

where the integral of f is taken over the interval [a, b], and f €
C™H1[0, 1].

for the trapezoidal rule, n = 1, so we have xo = 0 and x; = 1.
for f(x) =

. f(n""])(x) — f(z) (X) — e*
+ maxgon]et] = ¢
e 1) =20=2

the integral becomes:

d

1 1
JI]x—me: x —0|-[x — 1] dx
0 3i—0 JO

1
= | x-|x—1/dx
Jo
1
= x:-(1—x)dx sincex—1<0on[0,1]

Jo

-1
= (x—xz)dx

Jo

- 1
B S N
2 3 0_2 3 6

therefore, the error bound is:
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e l_¢ 027

[Epo,1ylexp]| < AT

this gives the same bound as part ¢), confirming that both error
bound formulas are equivalent for the trapezoidal rule. the actual
error 3_76 ~ 0.141 is indeed less than this bound.

e)

to derive the composite trapezoidal rule, we divide the interval
[a, b] into n segments of equal length h = 2=¢, with points x; =

n
a+ihfori=0,1,...,n.
applying the basic trapezoidal rule to each subinterval [xi, xi11]:

h

T[Xi,Xi+1][ﬂ — E(f(xi) + f(xi41))

the composite rule sums over all subintervals:

n—1 n—1
h
Tawilfl = D Tonlfl = ) 5 (F(xi) + flxis))

expanding this sum:

h
(ol fl = z[f(xo) + f(x1) + f(x1) + f(x2) + oo + F(xn-1) + (X0 )]
we observe that f(xp) and f(x,) appear once, while

f(x1), f(x2), ..., f(xn_1) each appear twice. collecting terms:

n—1
T[] = 2 x0) + fx)) +h Y flxo)
i=1
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since xo = a and x,, = b, this gives us the desired composite
formula.

)
to derive the error bound for the composite trapezoidal rule, we
start with the error bound for each subinterval.

for each subinterval [xi, xi.1] with length h:

h3
E . [fll < — (&
B i) [ < 12£€ﬂ7}1ggf+1]l (&)

the total error for the composite rule is:

n—I1
[Eaplfll =1  Epaxenlfll
i=0
using the triangle inequality
n—I n—I
| Z Xl,XH_] | ~ Z|E XuX1+1
i=0 i=0
substituting the error bound for each subinterval:
n—I1 n— h3
Eix v [T < — max [f"(&
2 Bl < )77, max (€

since [xi, Xi1+1] C [a, b], we have:

max [f"(E)] < max|[f’(&)]
E€xiyXit1] £€la,b]

therefore:
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— f”
7 Q’G}Sﬁﬂ (&)]

b—a
f//
2 gﬂel[%l (&)]

b— a)3
_ b 92 gﬂel[gg]lf”(é)l

— h?.

g)

using the error bound formula:

(b—a)’

o]l <
first problem: [Ef 1 [exp]| < 1073

for f(x) =e*, we have f”(x) = e*. since e* is increasing,
maxge(o, ]f”( )| = e.

]3
12n?

12-?0—3 = 100043
therefore n > /10005 ~ 15.05,son. > 16.

e <1073

solving: n? >

second problem: [Ef ;[In]| < 1072

for f(x) = In(x), we have " (x) = —%. since [f"(x)| = 5 — o0
as x — 07, the function is not twice differentiable at x = 0. the
trapezoidal rule error bound does not apply.
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third problem: [Ef} ,,[£]| <1073

eX(x2—2x+2)

for f(x) = <, using the quotient rule: f(x) = &=

to find the maximum, we check:

e /(1) =e

e f7(1.5) ~ 1.66

¢« f(2) =< ~1.85

since f’(1) > f"(1.5) and (1) > f"(2), we have
maxgen 2)[f" (&) = e.

]3
12n?
solving: n = /100045 ~ 15.05,son > 16.

h) & 1)
empirically testing shows that n = 12 subintervals already

achieves ]EE&”[exp]] < 1073, furthermore, we need 120
subintervals for error 107>,

J)
to estimate the convergence rate, we fit the model E,, ~ ChP by
taking logarithms:

e <1073

loglE,| ~logC +plogh

using linear regression on (logh,log|E,|) data for various
values of n:

for exp(x) on [0, 1]:
* estimated p; ~ 2.0

for v/x on [0, 1]:
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* estimated p; ~ 1.5

k)
for exp(x): p1 ~ 2.0 = quadratic

for sqrt(x): p2 ~ 1.5 shows that f"(x) = —%X_% is unbounded as
x — 0T,
)
given
M M
1 3 2 3
E[a,b] = _ﬁ(b — Cl) and E[a,b] = —@(b — (l)

we obtain Ega’b] = 4E[2a)b].

since
1 ] 2 2
Elap) = liapilf] = Tlapy  and  Ejgp) = Liab)[f] = Tjap)
we get

1 2 2 1
Ela ) — Ejap) = Tiao) = Tiap)



m)

for f(x) = v/x on [0, 1] with 10 uniform intervals and tolerance

1074

Interval TEa)b] T[za)b] I¢ Ea)b] |
[0,0.1] | 0.015811 | 0.019086 | 0.004367
[0.1,0.2] | 0.038172 | 0.038451 | 0.000372
[0.2,0.3] | 0.049747 | 0.049873 | 0.000168
[0.3,0.4] | 0.059009 | 0.059085 | 0.000101
[0.4,0.5] | 0.066978 | 0.06703 | 0.000069
[0.5,0.6] | 0.074085 | 0.074124 | 0.000052
[0.6,0.7] | 0.080563 | 0.080593 | 0.00004
[0.7,0.8] | 0.086554 | 0.086578 | 0.000032
[0.8,0.9] | 0.092156 | 0.092175 | 0.000025
[0.9,1.0] | 0.097434 | 0.097451 | 0.000023

intervals needing refinement (error > 10~%): first 4 intervals

n)

implemented adaptive trapezoidal quadrature with tolerance
tol = 107>:

Function | Adaptive Result | Intervals Used | Uniform (part 1)
e~ 1.7183 64 120

VX 0.6667 79 -

the adaptive algorithm automatically allocates computational
effort where needed, making it more efficient than uniform

refinement.
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problem 2

a)

to transform the quadrature rule from [—1, 1] to (—3, 3) we use

b—a b+a

t t
2 i 2 3

X =
where t € [—1, 1], so dx = 3dt. then
3 1 1
J eXdx = J e3t.3dt = SJ e3tdt
-3 —1 —1
the gaul3-legendre approximation is given by

3
Gp =3 Z wie3"i
1=0

SO
Gn = 3(woe®™ 4+ wie™ + wye¥2 + wze¥s)
= 3(6.676229465096898)
= 20.028688395290693
wheras the exact value is €3 — e3> = 20.035749854819805.
b)

from the given error formula, each subinterval of length h = b_?a

contributes error

2n+1
E oc 2+ = (—b — a) ’

m
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total error from m subintervals

. 2n+1 _2n+

m

we expect error to decrease when we subdivide the interval. more
subintervals means more precision.

c)

let f(x) = ’g—f

we can see that f?™(x) = % forn > 0and < 8so0

G2n+1 (Tl!)4 58—2n
E:i — :
YT on+nen)P (8—2n)

then sum the left and right errors to obtain

32n—|—1 (TL' )4 a?—Zn 4 ES—Zn
n+ 12 (8—2n)

E, =

which yields

E; E.?_Zn + E.g_zn
E;  22ntlgd8-m

we can see that increasing n makes it more accurate very fast, as
the numerator grows smaller exponentially and the denominator
bigger.
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problem 3

a)
to find an orthogonal basis p;(x) from the given canonical basis

$o(x) = 1) $1(x) = x, b2(x) = Xz) b3(x) = X3)
we can use the gram-schmidt process.

recall that

j—1 d
p;(x Jo &ylx ) L),
k=0 fo Pk dX

and notice that po(x) = 1.

thus we obtain
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p1(x) = d1(x) — [T Ipot) dx o(x)
1
o1
f(]) dx 2
P2(x) = da(x) — [y b2(x)p1(x) dx |
Jo IP1(X))* dx

 Jy b2(3)po(x) a
f; [PO(X)]Z dx

2 f;xz(x—%)dx( 1)

=X

— 2 ]
Jo [X—%} dx 2
1.2

d 1

_ o:‘ X ol

Jo dx 6
3 3 1
maglc_ 3__ 2 2 S

b)
we perform polynomial division to find the remaining two roots
and obtain

1 5 1
p3(x)'(X—z)—x —x+

#x—lil\/g
27 2V5
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IRERNE
©=373V5
1
X1—§>
113
XZ—E-FZ g

let
1
Wi = J €i(x) dx
0
with
n—I1 X — X
) =]] :
i—o Xk T X
1=k

where n — 1 = 2 since k =0, 1, 2.

computing the cardinal polynomials, we obtain
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X —X1 X —X2

lo(x) =
X0 — X1 X0 —X2
xX—3 X_‘_Z\ﬁ
zf
( e +[x+ f)
bi(x) = AR R
X1 —X0 X1 —X2
1 1 3 1 1 3
_X—2T3V5 X737 3V5
1 3 1 3
I3 IV5
4 5 1
S(X _X+1O)
X —X X —X
lo(x) = 2. :

X2 — X0 X2 — X7
5 ) \F 1\F 1
3( 2x 5x+2 5+2)

integrating to find the weights

1 5
wozdoﬁo(x)dx:ﬁ
- 4

W1 = Bﬂx)dx:—
JO 9

Wy = "1€ (x)dx—3
et 18

by symmetry we have wy = wy.



d)

the 3-point gauB-legendre quadrature rule for [0, 1] is

1
5 4 (1 5
f ~ —Ff —f| = —f
!o (x) dx 13 (xo)+9 (2)+ 13 (x2)

where X :%—%\/gandxz :%—l— %\/g

to verify that the 3-point rule integrates x> exactly, we compute

1 6 1
5 X
xdx = — |y = =
and using the symmetry property and binomial expansion for
xg+xgwherexo:%—% %andxz:%nt% %,Weobtain
5 ( 5 5) N 4 1 1
—| x5+ x — = ==
18\ 772 "9 32 6
i

e)

to show equivalence with the standard table, we transform from
the reference interval [—1, 1] to [0, 1] using:

t41
x:% where t € [—1,1] and x € [0, 1]

SO
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L R BV T
S T
_0+1 1
=T =3
v 4 V15
2=7 :E 10
using the change of variables x = % e have dx = % dt. so
5 1 5
Wo=513= 3
8 1 4
M=537%
5 1 5
Wz—az—ﬁ
note that % = = so the transformed rule matches

exactly our derived 3 pomt gaul3-legendre quadrature for [0, 1],
confirming that both approaches yield the same integration rule.
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