
exercise 3
these are my solutions to the third exercise set of TMA4135.

there should be a python source code file attached to this
deliverable.

this document was created using typst.
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problem 1

a) & b)
using the trapezoidal rule we can estimate

(1) 𝐼[0,1][exp] ≔ ∫
1

0
𝑒𝑥 d𝑥, (2) 𝐼[0,1][ln] ≔ ∫

1

0
ln(𝑥) d𝑥

let us solve both analytically first, starting with (1)

∫
1

0
𝑒𝑥 d𝑥 = 𝑒𝑥|10 = 𝑒 − 1

then (2)

∫
1

0
ln(𝑥) d𝑥 = [𝑥 ln(𝑥) − 𝑥]10

= (1 ln(1) − 1) − lim
𝑡→0+

(𝑡 ln(𝑡) − 𝑡)

= −1 − 0 = −1,

where we used integration by parts and the fact that
lim𝑡→0+ 𝑡 ln(𝑡) = 0.

now we know what to expect from our estimates.

recall the trapezoidal rule

𝐼[𝑎,𝑏][𝑓] ≈ 𝑇[𝑎,𝑏][𝑓] ≔
𝑏 − 𝑎
2 (𝑓(𝑎) + 𝑓(𝑏))

in our case 𝑎 = 0 and 𝑏 = 1. for (1) with 𝑓(𝑥) = 𝑒𝑥 we obtain
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𝑇[0,1][exp] =
1
2(𝑒

0 + 𝑒1) = 1
2(1 + 𝑒) =

1 + 𝑒
2 ,

which yields an error of

𝐸[0,1][exp] = (𝑒 − 1) −
1 + 𝑒
2 = 2𝑒 − 2 − 1 − 𝑒

2 = 𝑒 − 3
2 .

for (2) with 𝑓(𝑥) = ln(𝑥) we obtain

𝑇[0,1][ln] =
1
2(ln(0) + ln(1)) =

1
2(−∞+ 0) = −∞

which yields an error of +∞.

thus we can see that using the trapezoidal rule for ln(𝑥) diverges
and proves to be unwieldy. for exp(𝑥) the actual error is 𝑒−32 ≈
−0.141.

c)
recall the upper bound of the error for the trapezoidal rule

|𝐸[𝑎,𝑏][𝑓]| ≤
(𝑏 − 𝑎)3

12 ⋅ max
𝜉∈[𝑎,𝑏]

|𝑓″(𝜉)|

which is for 𝑓 = exp on [0, 1]

|𝐸[0,1][exp]| ≤
13
12 ⋅ max𝜉∈[0,1]

|𝑒𝜉| = 𝑒
12 ≈ 0.227

Our actual error magnitude is |𝑒−32 | =
3−𝑒
2 ≈ 0.141.

Since 0.141 ≤ 0.227, the error bound is satisfied.
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d)
recall the error bound derived in the lecture,

|𝐸[0,1][𝑓]| ≤
max𝜉∈[𝑎,𝑏]|𝑓(𝑛+1)(𝜉)|

(𝑛 + 1)! ∫
𝑏

𝑎
∏
𝑛

𝑖=0
|𝑥 − 𝑥𝑖| d𝑥,

where the integral of 𝑓 is taken over the interval [𝑎, 𝑏], and 𝑓 ∈
𝐶𝑛+1[0, 1].

for the trapezoidal rule, 𝑛 = 1, so we have 𝑥0 = 0 and 𝑥1 = 1.
for 𝑓(𝑥) = 𝑒𝑥:

• 𝑓(𝑛+1)(𝑥) = 𝑓(2)(𝑥) = 𝑒𝑥
• max𝜉∈[0,1]|𝑒𝜉| = 𝑒
• (𝑛 + 1)! = 2! = 2

the integral becomes:

∫
1

0
∏
1

𝑖=0
|𝑥 − 𝑥𝑖| d𝑥 = ∫

1

0
|𝑥 − 0| ⋅ |𝑥 − 1| d𝑥

= ∫
1

0
𝑥 ⋅ |𝑥 − 1| d𝑥

= ∫
1

0
𝑥 ⋅ (1 − 𝑥) d𝑥 since 𝑥 − 1 ≤ 0 on [0, 1]

= ∫
1

0
(𝑥 − 𝑥2) d𝑥

= [𝑥
2

2 −
𝑥3
3 ]

1

0

= 1
2 −

1
3 =

1
6

therefore, the error bound is:
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|𝐸[0,1][exp]| ≤
𝑒
2 ⋅
1
6 =

𝑒
12 ≈ 0.227

this gives the same bound as part c), confirming that both error
bound formulas are equivalent for the trapezoidal rule. the actual
error 3−𝑒2 ≈ 0.141 is indeed less than this bound.

e)
to derive the composite trapezoidal rule, we divide the interval
[𝑎, 𝑏] into 𝑛 segments of equal length ℎ = 𝑏−𝑎

𝑛 , with points 𝑥𝑖 =
𝑎 + 𝑖ℎ for 𝑖 = 0, 1,…, 𝑛.

applying the basic trapezoidal rule to each subinterval [𝑥𝑖, 𝑥𝑖+1]:

𝑇[𝑥𝑖,𝑥𝑖+1][𝑓] =
ℎ
2 (𝑓(𝑥𝑖) + 𝑓(𝑥𝑖+1))

the composite rule sums over all subintervals:

𝑇𝑛[𝑎,𝑏][𝑓] =∑
𝑛−1

𝑖=0
𝑇[𝑥𝑖,𝑥𝑖+1][𝑓] =∑

𝑛−1

𝑖=0

ℎ
2 (𝑓(𝑥𝑖) + 𝑓(𝑥𝑖+1))

expanding this sum:

𝑇𝑛[𝑎,𝑏][𝑓] =
ℎ
2 [𝑓(𝑥0) + 𝑓(𝑥1) + 𝑓(𝑥1) + 𝑓(𝑥2) + … + 𝑓(𝑥𝑛−1) + 𝑓(𝑥𝑛)]

we observe that 𝑓(𝑥0) and 𝑓(𝑥𝑛) appear once, while
𝑓(𝑥1), 𝑓(𝑥2), …, 𝑓(𝑥𝑛−1) each appear twice. collecting terms:

𝑇𝑛[𝑎,𝑏][𝑓] =
ℎ
2 (𝑓(𝑥0) + 𝑓(𝑥𝑛)) + ℎ∑

𝑛−1

𝑖=1
𝑓(𝑥𝑖)
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since 𝑥0 = 𝑎 and 𝑥𝑛 = 𝑏, this gives us the desired composite
formula.

f)
to derive the error bound for the composite trapezoidal rule, we
start with the error bound for each subinterval.

for each subinterval [𝑥𝑖, 𝑥𝑖+1] with length ℎ:

|𝐸[𝑥𝑖,𝑥𝑖+1][𝑓]| ≤
ℎ3
12 max

𝜉∈[𝑥𝑖,𝑥𝑖+1]
|𝑓″(𝜉)|

the total error for the composite rule is:

|𝐸𝑛[𝑎,𝑏][𝑓]| = |∑
𝑛−1

𝑖=0
𝐸[𝑥𝑖,𝑥𝑖+1][𝑓]|

using the triangle inequality:

|∑
𝑛−1

𝑖=0
𝐸[𝑥𝑖,𝑥𝑖+1][𝑓]| ≤∑

𝑛−1

𝑖=0
|𝐸[𝑥𝑖,𝑥𝑖+1][𝑓]|

substituting the error bound for each subinterval:

∑
𝑛−1

𝑖=0
|𝐸[𝑥𝑖,𝑥𝑖+1][𝑓]| ≤∑

𝑛−1

𝑖=0

ℎ3
12 max

𝜉∈[𝑥𝑖,𝑥𝑖+1]
|𝑓″(𝜉)|

since [𝑥𝑖, 𝑥𝑖+1] ⊂ [𝑎, 𝑏], we have:

max
𝜉∈[𝑥𝑖,𝑥𝑖+1]

|𝑓″(𝜉)| ≤ max
𝜉∈[𝑎,𝑏]

|𝑓″(𝜉)|

therefore:
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∑
𝑛−1

𝑖=0

ℎ3
12 max

𝜉∈[𝑥𝑖,𝑥𝑖+1]
|𝑓″(𝜉)| ≤ ℎ3

12∑
𝑛−1

𝑖=0
max
𝜉∈[𝑎,𝑏]

|𝑓″(𝜉)|

= ℎ3
12 ⋅ 𝑛 ⋅ max𝜉∈[𝑎,𝑏]

|𝑓″(𝜉)|

= ℎ2 ⋅ 𝑏 − 𝑎12 max
𝜉∈[𝑎,𝑏]

|𝑓″(𝜉)|

= (𝑏 − 𝑎)3

12𝑛2 max
𝜉∈[𝑎,𝑏]

|𝑓″(𝜉)|

g)
using the error bound formula:

|𝐸𝑛[𝑎,𝑏][𝑓]| ≤
(𝑏 − 𝑎)3

12𝑛2 max
𝜉∈[𝑎,𝑏]

|𝑓″(𝜉)|

first problem: |𝐸𝑛[0,1][exp]| ≤ 10−3

for 𝑓(𝑥) = 𝑒𝑥, we have 𝑓″(𝑥) = 𝑒𝑥. since 𝑒𝑥 is increasing,
max𝜉∈[0,1]|𝑓″(𝜉)| = 𝑒.

13
12𝑛2 ⋅ 𝑒 ≤ 10

−3

solving: 𝑛2 ≥ 𝑒
12⋅10−3 = 1000

𝑒
12

therefore 𝑛 ≥ √1000 𝑒12 ≈ 15.05, so 𝑛 ≥ 16.

second problem: |𝐸𝑛[0,1][ln]| ≤ 10−5

for 𝑓(𝑥) = ln(𝑥), we have 𝑓″(𝑥) = − 1
𝑥2 . since |𝑓″(𝑥)| = 1

𝑥2 →∞
as 𝑥 → 0+, the function is not twice differentiable at 𝑥 = 0. the
trapezoidal rule error bound does not apply.
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third problem: |𝐸𝑛[1,2][𝑒
𝑥

𝑥 ]| ≤ 10
−3

for 𝑓(𝑥) = 𝑒𝑥
𝑥 , using the quotient rule: 𝑓″(𝑥) = 𝑒𝑥(𝑥2−2𝑥+2)

𝑥3

to find the maximum, we check:
• 𝑓″(1) = 𝑒
• 𝑓″(1.5) ≈ 1.66
• 𝑓″(2) = 𝑒2

4 ≈ 1.85

since 𝑓″(1) > 𝑓″(1.5) and 𝑓″(1) > 𝑓″(2), we have
max𝜉∈[1,2]|𝑓″(𝜉)| = 𝑒.

13
12𝑛2 ⋅ 𝑒 ≤ 10

−3

solving: 𝑛 ≥ √1000 𝑒12 ≈ 15.05, so 𝑛 ≥ 16.

h) & i)
empirically testing shows that 𝑛 = 12 subintervals already
achieves |𝐸12[0,1][exp]| ≤ 10−3. furthermore, we need 120
subintervals for error 10−5.

j)
to estimate the convergence rate, we fit the model 𝐸𝑛 ≈ 𝐶ℎ𝑝 by
taking logarithms:

log|𝐸𝑛| ≈ log𝐶 + 𝑝 logℎ

using linear regression on (logℎ, log|𝐸𝑛|) data for various
values of 𝑛:

for exp(𝑥) on [0, 1]:
• estimated 𝑝1 ≈ 2.0

for √𝑥 on [0, 1]:
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• estimated 𝑝2 ≈ 1.5

k)
for exp(x): 𝑝1 ≈ 2.0 ⇒ quadratic

for sqrt(x): 𝑝2 ≈ 1.5 shows that 𝑓″(𝑥) = −1
4𝑥
−32  is unbounded as

𝑥 → 0+.

l)
given

𝐸1[𝑎,𝑏] = −
𝑀
12(𝑏 − 𝑎)

3 and 𝐸2[𝑎,𝑏] = −
𝑀
48(𝑏 − 𝑎)

3

we obtain 𝐸1[𝑎,𝑏] = 4𝐸2[𝑎,𝑏].

since

𝐸1[𝑎,𝑏] = 𝐼[𝑎,𝑏][𝑓] − 𝑇1[𝑎,𝑏] and 𝐸2[𝑎,𝑏] = 𝐼[𝑎,𝑏][𝑓] − 𝑇2[𝑎,𝑏]

we get

𝐸1[𝑎,𝑏] − 𝐸2[𝑎,𝑏] = 𝑇2[𝑎,𝑏] − 𝑇1[𝑎,𝑏]

thus

4𝐸2[𝑎,𝑏] − 𝐸2[𝑎,𝑏] = 𝑇2[𝑎,𝑏] − 𝑇1[𝑎,𝑏]
3𝐸2[𝑎,𝑏] = 𝑇2[𝑎,𝑏] − 𝑇1[𝑎,𝑏]

⟹𝐸1[𝑎,𝑏] = 4𝐸2[𝑎,𝑏] =
4
3(𝑇

2
[𝑎,𝑏] − 𝑇1[𝑎,𝑏]) ≕ ℰ1[𝑎,𝑏][𝑓]

𝐸2[𝑎,𝑏] =
1
3(𝑇

2
[𝑎,𝑏] − 𝑇1[𝑎,𝑏]) ≕ ℰ2[𝑎,𝑏][𝑓]
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m)
for 𝑓(𝑥) = √𝑥 on [0, 1] with 10 uniform intervals and tolerance
10−4:

Interval 𝑇1[𝑎,𝑏] 𝑇2[𝑎,𝑏] |ℰ1[𝑎,𝑏]|
[0, 0.1] 0.015811 0.019086 0.004367
[0.1, 0.2] 0.038172 0.038451 0.000372
[0.2, 0.3] 0.049747 0.049873 0.000168
[0.3, 0.4] 0.059009 0.059085 0.000101
[0.4, 0.5] 0.066978 0.06703 0.000069
[0.5, 0.6] 0.074085 0.074124 0.000052
[0.6, 0.7] 0.080563 0.080593 0.00004
[0.7, 0.8] 0.086554 0.086578 0.000032
[0.8, 0.9] 0.092156 0.092175 0.000025
[0.9, 1.0] 0.097434 0.097451 0.000023

intervals needing refinement (error > 10−4): first 4 intervals

n)
implemented adaptive trapezoidal quadrature with tolerance
tol = 10−5:

Function Adaptive Result Intervals Used Uniform (part i)
𝑒𝑥 1.7183 64 120
√𝑥 0.6667 79 -

the adaptive algorithm automatically allocates computational
effort where needed, making it more efficient than uniform
refinement.
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problem 2

a)
to transform the quadrature rule from [−1, 1] to (−3, 3) we use

𝑥 = 𝑏 − 𝑎
2 𝑡 + 𝑏 + 𝑎2 = 3𝑡

where 𝑡 ∈ [−1, 1], so 𝑑𝑥 = 3𝑑𝑡. then

∫
3

−3
𝑒𝑥𝑑𝑥 = ∫

1

−1
𝑒3𝑡 ⋅ 3𝑑𝑡 = 3 ∫

1

−1
𝑒3𝑡𝑑𝑡

the gauß-legendre approximation is given by

𝐺ℎ = 3∑
3

𝑖=0
𝑤𝑖𝑒3𝑥𝑖

so

𝐺ℎ = 3(𝑤0𝑒3𝑥0 +𝑤1𝑒3𝑥1 +𝑤2𝑒3𝑥2 +𝑤3𝑒3𝑥3)
= 3(6.676229465096898)
= 20.028688395290693

wheras the exact value is 𝑒3 − 𝑒−3 = 20.035749854819805.

b)
from the given error formula, each subinterval of length ℎ = 𝑏−𝑎

𝑚
contributes error

𝐸𝑖 ∝ ℎ2𝑛+1 = (
𝑏 − 𝑎
𝑚 )

2𝑛+1
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total error from m subintervals

𝐸𝑚 ∝ 𝑚 ⋅ (𝑏 − 𝑎𝑚 )
2𝑛+1

= (𝑏 − 𝑎)2𝑛+1

𝑚2𝑛

we expect error to decrease when we subdivide the interval. more
subintervals means more precision.

c)
let 𝑓(𝑥) = 𝑥8

8!

we can see that 𝑓(2𝑛)(𝑥) = 𝑥8−2𝑛
(8−2𝑛)!  for 𝑛 > 0 and ≤ 8 so

𝐸1 =
62𝑛+1(𝑛!)4

(2𝑛 + 1)[(2𝑛)!]3
⋅ 𝜉8−2𝑛
(8 − 2𝑛)!

then sum the left and right errors to obtain

𝐸2 =
32𝑛+1(𝑛!)4

(2𝑛 + 1)[(2𝑛)!]3
⋅ 𝜉

8−2𝑛
1 + 𝜉8−2𝑛2
(8 − 2𝑛)!

which yields

𝐸2
𝐸1
= 𝜉8−2𝑛1 + 𝜉8−2𝑛2

22𝑛+1𝜉8−2𝑛

we can see that increasing n makes it more accurate very fast, as
the numerator grows smaller exponentially and the denominator
bigger.
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problem 3

a)
to find an orthogonal basis 𝑝𝑗(𝑥) from the given canonical basis

𝜙0(𝑥) ≡ 1, 𝜙1(𝑥) = 𝑥, 𝜙2(𝑥) = 𝑥2, 𝜙3(𝑥) = 𝑥3,

we can use the gram-schmidt process.

recall that

𝑝𝑗(𝑥) = 𝜙𝑗(𝑥) −∑
𝑗−1

𝑘=0{
{
{∫10 𝜙𝑗(𝑥)𝑝𝑘(𝑥) d𝑥
∫10 [𝑝𝑘(𝑥)]

2 d𝑥 }
}
}
𝑝𝑘(𝑥),

and notice that 𝑝0(𝑥) ≡ 1.

thus we obtain
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𝑝1(𝑥) = 𝜙1(𝑥) −
∫10 𝜙1(𝑥)𝑝0(𝑥) d𝑥
∫10 [𝑝0(𝑥)]

2 d𝑥
𝑝0(𝑥)

= 𝑥 −
∫10 𝑥d𝑥
∫10 d𝑥

= 𝑥 − 12,

𝑝2(𝑥) = 𝜙2(𝑥) −
∫10 𝜙2(𝑥)𝑝1(𝑥) d𝑥
∫10 [𝑝1(𝑥)]

2 d𝑥
𝑝1(𝑥)

−
∫10 𝜙2(𝑥)𝑝0(𝑥) d𝑥
∫10 [𝑝0(𝑥)]

2 d𝑥
𝑝0(𝑥)

= 𝑥2 −
∫10 𝑥

2(𝑥 − 1
2) d𝑥

∫10 [𝑥 −
1
2]
2 d𝑥

(𝑥 − 12)

−
∫10 𝑥

2 d𝑥
∫10 d𝑥

= 𝑥2 − 𝑥 + 16

𝑝3(𝑥) = …magic = 𝑥3 − 32𝑥
2 + 35𝑥 −

1
20

b)
we perform polynomial division to find the remaining two roots
and obtain

𝑝3(𝑥) : (𝑥 −
1
2) = 𝑥

2 − 𝑥 + 1
10

⇒ 𝑥 = 1
2 ±

1
2
√3
5

so
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𝑥0 =
1
2 −

1
2
√3
5,

𝑥1 =
1
2,

𝑥2 =
1
2 +

1
2
√3
5.

c)
let

𝑤𝑖 = ∫
1

0
ℓ𝑖(𝑥) d𝑥

with

ℓ𝑘(𝑥) =∏
𝑛−1

𝑖=0
𝑖≠𝑘

𝑥 − 𝑥𝑖
𝑥𝑘 − 𝑥𝑖

where 𝑛 − 1 = 2 since 𝑘 = 0, 1, 2.

computing the cardinal polynomials, we obtain
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ℓ0(𝑥) =
𝑥 − 𝑥1
𝑥0 − 𝑥1

⋅ 𝑥 − 𝑥2𝑥0 − 𝑥2

=
𝑥 − 1

2

−1
2√

3
5

⋅
𝑥 − 1

2 −
1
2√

3
5

−√3
5

= 5
3(−2𝑥

2 +√35𝑥 +
1
2
√3
5 −

1
2)

ℓ1(𝑥) =
𝑥 − 𝑥0
𝑥1 − 𝑥0

⋅ 𝑥 − 𝑥2𝑥1 − 𝑥2

=
𝑥 − 1

2 +
1
2√

3
5

1
2√

3
5

⋅
𝑥 − 1

2 −
1
2√

3
5

1
2√

3
5

= 4
3(𝑥

2 − 𝑥 + 1
10)

ℓ2(𝑥) =
𝑥 − 𝑥0
𝑥2 − 𝑥0

⋅ 𝑥 − 𝑥1𝑥2 − 𝑥1

= 5
3(−2𝑥

2 −√35𝑥 +
1
2
√3
5 +

1
2)

integrating to find the weights

𝑤0 = ∫
1

0
ℓ0(𝑥) d𝑥 =

5
18

𝑤1 = ∫
1

0
ℓ1(𝑥) d𝑥 =

4
9

𝑤2 = ∫
1

0
ℓ2(𝑥) d𝑥 =

5
18

by symmetry we have 𝑤0 = 𝑤2.
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d)
the 3-point gauß-legendre quadrature rule for [0, 1] is

∫
1

0
𝑓(𝑥) d𝑥 ≈ 5

18𝑓(𝑥0) +
4
9𝑓(

1
2) +

5
18𝑓(𝑥2)

where 𝑥0 = 1
2 −

1
2√

3
5  and 𝑥2 = 1

2 +
1
2√

3
5 .

to verify that the 3-point rule integrates 𝑥5 exactly, we compute

∫
1

0
𝑥5 d𝑥 = 𝑥6

6 |10 =
1
6

and using the symmetry property and binomial expansion for
𝑥50 + 𝑥52 where 𝑥0 = 1

2 −
1
2√

3
5  and 𝑥2 = 1

2 +
1
2√

3
5 , we obtain

5
18(𝑥

5
0 + 𝑥52) +

4
9 ⋅

1
32 =

1
6

∎

e)
to show equivalence with the standard table, we transform from
the reference interval [−1, 1] to [0, 1] using:

𝑥 = 𝑡 + 1
2 where 𝑡 ∈ [−1, 1] and 𝑥 ∈ [0, 1]

so
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𝑥0 =
−√15

5 + 1
2 = 1

2 −
√15
10

𝑥1 =
0 + 1
2 = 1

2

𝑥2 =
√15
5 + 1
2 = 1

2 +
√15
10

using the change of variables 𝑥 = 𝑡+1
2 , we have d𝑥 = 1

2 d𝑡. so

𝑤0 =
5
9 ⋅
1
2 =

5
18

𝑤1 =
8
9 ⋅
1
2 =

4
9

𝑤2 =
5
9 ⋅
1
2 =

5
18

note that √15
10 =

1
2√

3
5  so the transformed rule matches

exactly our derived 3-point gauß-legendre quadrature for [0, 1],
confirming that both approaches yield the same integration rule.
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