#import "@preview/physica:0.9.6": * #import "lib.typ": ccases, fourier = problem 3 == a) the truncated fourier series of a function looks like $ f_N = #fourier(N: $N$) $ note: i use $a_0/2$ with a $1/L$ in the definition of $a_0$. then to calculate the error, we take the difference with the actual function, which can be expressed as an infinite fourier series $ e_N (x) & = f(x) - f_N (x) \ & = [#fourier()] \ & - [#fourier(N: $N$)] \ & = sum_(n=N+1)^oo (a_n cos(n x) + b_n sin(n x)) $ it is the tail end of the infinite sum. parsevals identity states that $ angle.l f, f angle.r = 1/L integral_(-L)^L abs(f(x))^2 dd(x) = a_0^2/2 + sum_(n=1)^oo (a_n^2 + b_n^2) $ == b) let $f(x) = e^(-x)$ we first need to find the fourier coefficients $ a_0 = integral_(-1)^1 e^(-x) dd(x) = [e^x]_(-1)^1 = e - 1/e $ $ a_n = $