
assignment 5 - prolog

fredrik robertsen

2025-11-05

task 1

the following code is my solution:

payment(Sum, Coins) :-

 payment_acc(0, Sum, Coins).

payment_acc(Acc, Sum, []) :-

 Acc #= Sum.

payment_acc(Acc, Sum, [coin(Count, Value, Available)|

Tail]) :-

 Count in 0..Available,

 NewAcc #= Acc + Count * Value,

 payment_acc(NewAcc, Sum, Tail).

the predicate payment/2 has two arguments (hence /2). the first, Sum, is

a target cost we are attempting to make from a collection of Coins, a list

of coin/3 items, specifying the value of the coin type and how many of

such coins we have available.

this is a classic constraint satisfaction problem which is solved elegantly

in prolog, even with my messy first-timer code above.

we are essentially making a search in the state graph of our problem

space. this is what prolog does when it performs a combination of infer

1

ence/deduction, DFS and backtracking to find values that fit our variables,

given the stated predicates.

in this program we create a helper function which accumulates a sum

accross the recursion. this is similar to how we would solve it in oz,

except we would need to implement the search explicitly. prolog does a

lot of heavy lifting in that regard, since we are essentially only recursively

creating a long string of CNF logic statements that constrain our problem

until a solution can be found.

note that i am also using patternmatching to destructure the arguments

of the payment_acc predicate.

task 2

subtask 1

this is my solution code:

% arity 4 predicate

plan(Cabin1, Cabin2, Path, TotalDistance) :-

 plan(Cabin1, Cabin2, [Cabin1], Path, TotalDistance).

% base case

plan(Cabin1, Cabin2, Visited, Path, Distance) :-

 not(Cabin1 = Cabin2),

 distance(Cabin1, Cabin2, Distance, 1),

 append(Visited, [Cabin2], Path).

% recursive case

plan(Cabin1, Cabin2, Visited, Path, TotalDistance) :-

 not(Cabin1 = Cabin2),

 distance(Cabin1, CabinX, Distance, 1),

 \+ member(CabinX, Visited),

 append(Visited, [CabinX], NewVisited),

 plan(CabinX, Cabin2, NewVisited, Path, SubDistance),

 TotalDistance is Distance + SubDistance.

2

as you can see, i learned that you can overload predicates with differing

arities, such that the previous payment_acc could’ve only been named

payment. we can also do multiple definitions to clearly state the different

branches of a recursive algorithm, such as the base case and the recursive

step.

we can then use a plan/5 auxiliary function to carry a log of what cabins

we have already Visited. thus, our base case becomes the case where we

have a direct connection between the first and last cabin, such that we

can easily read the distance from the predicate. then just make sure to

mark Cabin2 as visited.

in the recursive step we assume there is a CabinX that lies between our

start and end cabins. this cabin cannot have been visited previously,

lest we enter an infinite cycle – \+ member(CabinX, Visited). we

can then visit CabinX and continue our search recursively from there –

plan(CabinX, Cabin2, ...). lastly, we can calculate the TotalDistance

as the sum of the total distance from CabinX to Cabin2 and the total

distance from Cabin1 to CabinX.

Cabin1 --> CabinX --> Cabin2

 L Distance J L SubDistance J

 L TotalDistance J

subtask 2

my initial solution was:

bestplan(Cabin1, Cabin2, ShortestPath, ShortestDistance) :-

 findall([Path, Distance], (plan(Cabin1, Cabin2, Path,

Distance)), Solutions),

 shortestpath(Solutions, [ShortestPath,

ShortestDistance]).

% takes a list of [Path, Distance] pairs

shortestpath([[Path, Distance]|[]], Solution) :- Solution =

3

[Path, Distance].

shortestpath([[Path, Distance]|Tail], [ShortestPath,

ShortestDistance]) :-

 shortestpath(Tail, [TailPath, TailDistance]),

 (Distance < TailDistance ->

 (ShortestPath = Path, ShortestDistance = Distance)

 ;

 (ShortestPath = TailPath, ShortestDistance =

TailDistance)

).

but i cleaned it up to this:

bestplan(Cabin1, Cabin2, ShortestPath, ShortestDistance) :-

 findall([Path, Distance], (plan(Cabin1, Cabin2, Path,

Distance)), Solutions),

 sort(2, @=<, Solutions, [ShortestSolution|_]),

 [ShortestPath, ShortestDistance] = ShortestSolution.

the main idea is a bit naive: we are just picking out the shortest path from

all the paths we find using the plan predicate from the last subtask. it

sounds like it wouldn’t be particularly performant, but i think prolog does

a lot of work such that it isn’t too terrible.

anyway, i initially just expanded all the paths found by plan, then used

a homemade shortestpath/2 predicate that works on a list of [Path,

Distance] pairs to tail recurse and find the shortest such pair, keeping a

running shortest distance result. this is similar to oz, taking the head of

the list, checking if it is smaller than the current accumulated value, then

carry on the smaller value of the two. the base case is when we only have

a single path and distance: we return that as a solution.

but this entire process can be shortened to simply sorting the solutions

based on the distance and then picking the first one of that list. the code

above performs such a sort and only takes the first solution in the sorted

4

list, sorting from low to high based on the key 2, such that we are sorting

the distance.

5

	task 1
	task 2
	subtask 1
	subtask 2

