assignment 4

fredrik robertsen

2025-10-27

task 1
()

the code quite consistently outputs

30
3000
10
20
200
100

(b)

the result is as such, because 30 gets printed first, since statements are sequential. then 3000 gets
printed, which is the last statement. then, all main statements have been executed, so the threads
will start executing, starting with the first thread to have been declared. thus it outputs 10. but
then while the thread is waiting for 100 ms, the next thread gets to run and 20 is printed. then the
last thread finishes first and prints 200, then lastly 100 from the first thread.

it is indeed possible for it to output a different sequence. i managed to have it print out 100 before
200, which is what i would’ve expected it to print out initially, since the first thread would have
been waiting while the last thread got to printing, but for some reason most cases show that the
last thread prints before the first.

()

the code consistently outputs

2
20
22

(d)

the code initially comes to C = A + B and halts, letting threads execute. the first thread sets A
= 2 and prints this, then the second thread sets B = A * 10 such that 20 is printed. then lastly
we print

22.



this code will always produce the correct values (no data races), but it may rarely print a different
order. this is because C waits for A and B, and B waits for A. thus A has to be handled first, then
B, then C. however, since the second thread isn’t atomic, it may be slow to show, thus the main
thread might print first and we’d end up with

2
22
20

task 2

the following code is my implementation of {Enumerate Start End}, which should asynchro-
nously generate a stream of numbers between both endpoints, inclusive.

fun {Enumerate Start End} Inner in
fun {Inner Start End}
if End == Start then
Start|nil
else
Start|{Inner (Start+l) End}
end
end
thread {Inner Start End} end
end

using the previous function, i can simply filter this list on modulo 2 to see if it is divisible by 2 or
not, i.e. if it is odd or even.

fun {GenerateOdd Start End}

thread
{Filter
{Enumerate Start End}
fun {$ N}
N mod 2 \=0
end
}
end
end

displaying these functions using Show yields _<optimized> as an output, due to my wrapping of
the output in a thread ... end block.

using Browse correctly shows the expected numbers.

my understanding is that if the function returns a thread that performs some computation that
doesn’t spawn more threads (which is why we use an Inner function in Enumerate), then it will
perform that computation asynchronously whenever that function is called.

thus, if we use Browse, it will perform the computation and display the output in the Browse-
window as soon as it is completed. but Show will immediately attempt to print out the value, which



doesn’t give the cpu any time to perform the computation, thus there are no values to show yet,
and it is only shown as the mysterious _<optimized>.

task 3

we can similarly to GenerateOdd consume Enumerate in various ways to obtain different lists of
numbers. this is actually one of the main modes of computation in array programming, where
programs are often compositions of functions that ultimately act on an array of numbers, such as
that of an iota-sequence, which is the same as {Enumerate 0 N-1} or {Enumerate 1 N}, depending
on indexing.

anyway, we can find the divisors of a number by checking for divisibility (remainder/modulus is
0) of each number up to that number. this can be done as follows

fun {ListDivisorsOf Number}
thread
{Filter
{Enumerate 1 Number}
fun {$ N}
Number mod N ==
end

}
end
end

we can then simply count how many elements are in the list of divisors of a given number to find
if it is prime or not. a prime number has only itself and 1 as divisors, so the length of the list must
be 2. the following code filters numbers satisfying this.

fun {ListPrimesUntil Number}
thread
{Filter
{Enumerate 2 Number}
fun {$ N}
{List.length {ListDivisorsOf N}} ==
end

}

end
end

note that we start our enumerate on 2, since we already know 1 isn’t prime. we could make further
optimizations, such as avoiding the expensive ListDivisors0f call for even numbers greater than
2, essentially halving our computational load. but i digress

task 4

the following code defines a lazy infinite list counting from 1 and up in increments of 1.

i couldn’t find many examples of code using the lazy keyword, but i found one, which was
precisely a counting example. so i could just use that as a base to fix the argument to 1.



fun lazy {Enumerate}
% stolen from
% https://github.com/alhassy/0zCheatSheet?tab=readme-ov-file#lazy-evaluation
fun lazy {Ints N} N|{Ints N+1} end
in {Ints 1}
end

the Ints function simply builds an infinite recursion on itself, but since it is specified as lazy, oz
knows to only compute the next step when it needs to.

we can filter this infinite list to obtain an infinite list of prime numbers. we use the same logic to
check for primality, i.e. counting the number of divisors of the given number.

fun lazy {Primes}
{Filter {EnumeratelLazy} fun {$ N} {List.length {ListDivisorsOf N}} == 2 end}
end

this code produces a list that contains all prime numbers. i.e.

{Browse {Primes}.1} % -> 2
{Browse {Primes}.2.1} % -> 3
{Browse {Primes}.2.2.1} % ->5
{Browse {Primes}.2.2.2.1} % -> 7



	task 1
	(a)
	(b)
	(c)
	(d)

	task 2
	task 3
	task 4

