assignment 1

these are our solutions to the first assignment of TDT4136.

this document was created using typst.

Part .. e 2
D) e e 2

) e 2

a) BES .. 2

b) DES . 2

C) UCS o 3

AT 2 o 3
B e e e 3

a) greedy bestfirstsearch 3

D) A 3

0221 A TP 3
A e 3

D) e 4

D) it 4

) e 4

<) S 5
bonus task e 5
D) e 5

this i1s the collaborative effort of group 192, Erlend Ulvund
Skaarberg and Fredrik Robertsen

1:6

https://typst.app/

part 1

1)

these are the costs

A|B|C|D|E|F|G|H|I
A 4 1
B 4 3|2
C 4 1
D 2 |1
E 1|2 1
F 1
G| 4 1
H 3 1
I|11](2 1
2)
a) BFS

* order of expansion: A, G, I, B,C,H, E, D
e found path: A, I, B,C,E,D,F
e pathcost: 1 +24+4+1+2+1=11

b) DFS
* order of expansion: A, G, I, B,C,E,D, F
e found path: A, G, I, B, C

* pathcost: 4 +14+2+4+14+2+1=15

¢) UCS

» order of expansion: A, I, B,H, C, E, D

e found path: A,I, B,H,C,E,D, F

e pathcost: 1 +24+34+14+14+2+1=11

part 2

3)

a) greedy best first search

* order of expansion: A, I, B, C,E, D

e found path: A, I, B,C,E,D,F

e pathcost: 1 +2+4+14+2+1=11

b) A*
* order of expansion: A, I, B, C,E, D

e found path: A, I, B,C,E,D, F
e pathcost: 1 +24+4+1+2+1=11

part 3

4)

admissibility is needed for A* to be optimal.

our heuristics are inadmissible, as they overestimate the cost of
the optimal path from each node to the goal. if we look at the

graph, the heuristics may encode a sense of distance between
each node accurately, however the problem states that the cost of

3:6

an action is the same between any two neighboring nodes (unless
there is a lift or a staircase present). thus, the heuristic estimates
are not very optimistic.

5)
the heuristic h(E) = 5 is an overestimation, as the shortest path
to the goal F is trivially seen to be 3. this is a counter-example

to the statement that the heuristic function h(n) is admissible, as
admissibility is defined as

hin)<Cn) V neV
where C*(n) is the cost of the optimal path from the node n.

6)

* order of expansion: A, I, B, H, E, D

* found path: A, I,B,H,E,D,F

e pathcost: 1 +2+4+3+1+24+1=10

7)

the new heuristic function h/(n) is admissible, because it does
not overestimate the cost of getting from any node to the goal.
thus we can see that when performing A* in 6) we find the cost-
optimal path from A to F.

suppose that there is a node n € V such that

h(n) > C*(n).

if such a node exists, then h/(n) is inadmissible. since no such
node exists, h/(n) is admissible.

admissibility guarantees that A* finds the cost-optimal path,

however it says nothing about optimal efficiency, like consistency
(see 8)).

8)

consistency of a heuristic h(n) is defined as a triangle inequality
h(n) < c(n, a,n’) +h(n’)

where c(n, a,n’) denotes the cost of the path-action a from n
ton’.

to see whether the heuristic h/(n) is consistent, we must
investigate each child node of each node on the cost-optimal path
to see if this identity holds.

e from A, it is not cheaper to get to I through G, thus the identity
holds.

e from B, it is not cheaper to get to H through C, thus the
identity holds.

e from H, it is not cheaper to get to E through C, thus the identity
holds.

these are all the nodes on the cost-optimal path with multiple
children where inconsistency could occur, but these cases are
consistent, thus our heuristic h/(n) is consistent.

bonus task

9)
if we let f(n)=gn)+h(n) in Best-First-
Search(problem, f) with a heuristic h(n) that is inadmissible

5:6

for at least one node on the cost-optimal path, unless it is
consistent.

however, we can also change the code implementation of A* to
require consistency of f(n):

function BEST-FIRST-SEARCH(problem,f) returns a solution node or failure
node<NODE (STATE=problem.INITIAL)
frontier<a priority queue ordered by f, with node as an element
reached-a lookup table, with one entry with key problem.INITIAL and value node
while not IS-EMPTY(frontier) do
node~POP(frontier)
if problem.IS-GOAL(node.STATE) then return node
for each child in EXPAND(problem, node) do
s«child.STATE
if s is not in reached or child.PATH-COST < reached[s].PATH-COST then
reached[s]<child
add child to frontier
[/ -
// calculate all parts of triangle inequality
h«f(n) - node.PATH-COST
h'«f(n) - child.PATH-COST
c—child.PATH-COST - node.PATH-COST
if h > c + h' then return failure // fail on inconsistency
A
return failure

6:6

	part 1
	1)
	2)
	a) BFS
	b) DFS
	c) UCS

	part 2
	3)
	a) greedy best first search
	b) A*

	part 3
	4)
	5)
	6)
	7)
	8)

	bonus task
	9)

