# Sudoku problems. # The CSP.ac_3() and CSP.backtrack() methods need to be implemented from csp import CSP, alldiff def print_solution(solution): """ Convert the representation of a Sudoku solution, as returned from the method CSP.backtracking_search(), into a Sudoku board. """ for row in range(width): for col in range(width): print(solution[f'X{row+1}{col+1}'], end=" ") if col == 2 or col == 5: print('|', end=" ") print("") if row == 2 or row == 5: print('------+-------+------') # Choose Sudoku problem grid = open('sudoku_easy.txt').read().split() width = 9 box_width = 3 domains = {} for row in range(width): for col in range(width): if grid[row][col] == '0': domains[f'X{row+1}{col+1}'] = set(range(1, 10)) else: domains[f'X{row+1}{col+1}'] = {int(grid[row][col])} edges = [] for row in range(width): edges += alldiff([f'X{row+1}{col+1}' for col in range(width)]) for col in range(width): edges += alldiff([f'X{row+1}{col+1}' for row in range(width)]) for box_row in range(box_width): for box_col in range(box_width): cells = [] edges += alldiff( [ f'X{row+1}{col+1}' for row in range(box_row * box_width, (box_row + 1) * box_width) for col in range(box_col * box_width, (box_col + 1) * box_width) ] ) csp = CSP( variables=[f'X{row+1}{col+1}' for row in range(width) for col in range(width)], domains=domains, edges=edges, ) print(csp.ac_3()) print_solution(csp.backtracking_search()) # Expected output after implementing csp.ac_3() and csp.backtracking_search(): # True # 7 8 4 | 9 3 2 | 1 5 6 # 6 1 9 | 4 8 5 | 3 2 7 # 2 3 5 | 1 7 6 | 4 8 9 # ------+-------+------ # 5 7 8 | 2 6 1 | 9 3 4 # 3 4 1 | 8 9 7 | 5 6 2 # 9 2 6 | 5 4 3 | 8 7 1 # ------+-------+------ # 4 5 3 | 7 2 9 | 6 1 8 # 8 6 2 | 3 1 4 | 7 9 5 # 1 9 7 | 6 5 8 | 2 4 3