Projects/worblehat-old
Projects
/
worblehat-old
Archived
12
0
Fork 0
This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
worblehat-old/python/gdata/Crypto/Util/randpool.py

422 lines
14 KiB
Python
Raw Normal View History

2010-09-23 15:57:37 +02:00
#
# randpool.py : Cryptographically strong random number generation
#
# Part of the Python Cryptography Toolkit
#
# Distribute and use freely; there are no restrictions on further
# dissemination and usage except those imposed by the laws of your
# country of residence. This software is provided "as is" without
# warranty of fitness for use or suitability for any purpose, express
# or implied. Use at your own risk or not at all.
#
__revision__ = "$Id: randpool.py,v 1.14 2004/05/06 12:56:54 akuchling Exp $"
import time, array, types, warnings, os.path
from Crypto.Util.number import long_to_bytes
try:
import Crypto.Util.winrandom as winrandom
except:
winrandom = None
STIRNUM = 3
class RandomPool:
"""randpool.py : Cryptographically strong random number generation.
The implementation here is similar to the one in PGP. To be
cryptographically strong, it must be difficult to determine the RNG's
output, whether in the future or the past. This is done by using
a cryptographic hash function to "stir" the random data.
Entropy is gathered in the same fashion as PGP; the highest-resolution
clock around is read and the data is added to the random number pool.
A conservative estimate of the entropy is then kept.
If a cryptographically secure random source is available (/dev/urandom
on many Unixes, Windows CryptGenRandom on most Windows), then use
it.
Instance Attributes:
bits : int
Maximum size of pool in bits
bytes : int
Maximum size of pool in bytes
entropy : int
Number of bits of entropy in this pool.
Methods:
add_event([s]) : add some entropy to the pool
get_bytes(int) : get N bytes of random data
randomize([N]) : get N bytes of randomness from external source
"""
def __init__(self, numbytes = 160, cipher=None, hash=None):
if hash is None:
from Crypto.Hash import SHA as hash
# The cipher argument is vestigial; it was removed from
# version 1.1 so RandomPool would work even in the limited
# exportable subset of the code
if cipher is not None:
warnings.warn("'cipher' parameter is no longer used")
if isinstance(hash, types.StringType):
# ugly hack to force __import__ to give us the end-path module
hash = __import__('Crypto.Hash.'+hash,
None, None, ['new'])
warnings.warn("'hash' parameter should now be a hashing module")
self.bytes = numbytes
self.bits = self.bytes*8
self.entropy = 0
self._hash = hash
# Construct an array to hold the random pool,
# initializing it to 0.
self._randpool = array.array('B', [0]*self.bytes)
self._event1 = self._event2 = 0
self._addPos = 0
self._getPos = hash.digest_size
self._lastcounter=time.time()
self.__counter = 0
self._measureTickSize() # Estimate timer resolution
self._randomize()
def _updateEntropyEstimate(self, nbits):
self.entropy += nbits
if self.entropy < 0:
self.entropy = 0
elif self.entropy > self.bits:
self.entropy = self.bits
def _randomize(self, N = 0, devname = '/dev/urandom'):
"""_randomize(N, DEVNAME:device-filepath)
collects N bits of randomness from some entropy source (e.g.,
/dev/urandom on Unixes that have it, Windows CryptoAPI
CryptGenRandom, etc)
DEVNAME is optional, defaults to /dev/urandom. You can change it
to /dev/random if you want to block till you get enough
entropy.
"""
data = ''
if N <= 0:
nbytes = int((self.bits - self.entropy)/8+0.5)
else:
nbytes = int(N/8+0.5)
if winrandom:
# Windows CryptGenRandom provides random data.
data = winrandom.new().get_bytes(nbytes)
elif os.path.exists(devname):
# Many OSes support a /dev/urandom device
try:
f=open(devname)
data=f.read(nbytes)
f.close()
except IOError, (num, msg):
if num!=2: raise IOError, (num, msg)
# If the file wasn't found, ignore the error
if data:
self._addBytes(data)
# Entropy estimate: The number of bits of
# data obtained from the random source.
self._updateEntropyEstimate(8*len(data))
self.stir_n() # Wash the random pool
def randomize(self, N=0):
"""randomize(N:int)
use the class entropy source to get some entropy data.
This is overridden by KeyboardRandomize().
"""
return self._randomize(N)
def stir_n(self, N = STIRNUM):
"""stir_n(N)
stirs the random pool N times
"""
for i in xrange(N):
self.stir()
def stir (self, s = ''):
"""stir(s:string)
Mix up the randomness pool. This will call add_event() twice,
but out of paranoia the entropy attribute will not be
increased. The optional 's' parameter is a string that will
be hashed with the randomness pool.
"""
entropy=self.entropy # Save inital entropy value
self.add_event()
# Loop over the randomness pool: hash its contents
# along with a counter, and add the resulting digest
# back into the pool.
for i in range(self.bytes / self._hash.digest_size):
h = self._hash.new(self._randpool)
h.update(str(self.__counter) + str(i) + str(self._addPos) + s)
self._addBytes( h.digest() )
self.__counter = (self.__counter + 1) & 0xFFFFffffL
self._addPos, self._getPos = 0, self._hash.digest_size
self.add_event()
# Restore the old value of the entropy.
self.entropy=entropy
def get_bytes (self, N):
"""get_bytes(N:int) : string
Return N bytes of random data.
"""
s=''
i, pool = self._getPos, self._randpool
h=self._hash.new()
dsize = self._hash.digest_size
num = N
while num > 0:
h.update( self._randpool[i:i+dsize] )
s = s + h.digest()
num = num - dsize
i = (i + dsize) % self.bytes
if i<dsize:
self.stir()
i=self._getPos
self._getPos = i
self._updateEntropyEstimate(- 8*N)
return s[:N]
def add_event(self, s=''):
"""add_event(s:string)
Add an event to the random pool. The current time is stored
between calls and used to estimate the entropy. The optional
's' parameter is a string that will also be XORed into the pool.
Returns the estimated number of additional bits of entropy gain.
"""
event = time.time()*1000
delta = self._noise()
s = (s + long_to_bytes(event) +
4*chr(0xaa) + long_to_bytes(delta) )
self._addBytes(s)
if event==self._event1 and event==self._event2:
# If events are coming too closely together, assume there's
# no effective entropy being added.
bits=0
else:
# Count the number of bits in delta, and assume that's the entropy.
bits=0
while delta:
delta, bits = delta>>1, bits+1
if bits>8: bits=8
self._event1, self._event2 = event, self._event1
self._updateEntropyEstimate(bits)
return bits
# Private functions
def _noise(self):
# Adds a bit of noise to the random pool, by adding in the
# current time and CPU usage of this process.
# The difference from the previous call to _noise() is taken
# in an effort to estimate the entropy.
t=time.time()
delta = (t - self._lastcounter)/self._ticksize*1e6
self._lastcounter = t
self._addBytes(long_to_bytes(long(1000*time.time())))
self._addBytes(long_to_bytes(long(1000*time.clock())))
self._addBytes(long_to_bytes(long(1000*time.time())))
self._addBytes(long_to_bytes(long(delta)))
# Reduce delta to a maximum of 8 bits so we don't add too much
# entropy as a result of this call.
delta=delta % 0xff
return int(delta)
def _measureTickSize(self):
# _measureTickSize() tries to estimate a rough average of the
# resolution of time that you can see from Python. It does
# this by measuring the time 100 times, computing the delay
# between measurements, and taking the median of the resulting
# list. (We also hash all the times and add them to the pool)
interval = [None] * 100
h = self._hash.new(`(id(self),id(interval))`)
# Compute 100 differences
t=time.time()
h.update(`t`)
i = 0
j = 0
while i < 100:
t2=time.time()
h.update(`(i,j,t2)`)
j += 1
delta=int((t2-t)*1e6)
if delta:
interval[i] = delta
i += 1
t=t2
# Take the median of the array of intervals
interval.sort()
self._ticksize=interval[len(interval)/2]
h.update(`(interval,self._ticksize)`)
# mix in the measurement times and wash the random pool
self.stir(h.digest())
def _addBytes(self, s):
"XOR the contents of the string S into the random pool"
i, pool = self._addPos, self._randpool
for j in range(0, len(s)):
pool[i]=pool[i] ^ ord(s[j])
i=(i+1) % self.bytes
self._addPos = i
# Deprecated method names: remove in PCT 2.1 or later.
def getBytes(self, N):
warnings.warn("getBytes() method replaced by get_bytes()",
DeprecationWarning)
return self.get_bytes(N)
def addEvent (self, event, s=""):
warnings.warn("addEvent() method replaced by add_event()",
DeprecationWarning)
return self.add_event(s + str(event))
class PersistentRandomPool (RandomPool):
def __init__ (self, filename=None, *args, **kwargs):
RandomPool.__init__(self, *args, **kwargs)
self.filename = filename
if filename:
try:
# the time taken to open and read the file might have
# a little disk variability, modulo disk/kernel caching...
f=open(filename, 'rb')
self.add_event()
data = f.read()
self.add_event()
# mix in the data from the file and wash the random pool
self.stir(data)
f.close()
except IOError:
# Oh, well; the file doesn't exist or is unreadable, so
# we'll just ignore it.
pass
def save(self):
if self.filename == "":
raise ValueError, "No filename set for this object"
# wash the random pool before save, provides some forward secrecy for
# old values of the pool.
self.stir_n()
f=open(self.filename, 'wb')
self.add_event()
f.write(self._randpool.tostring())
f.close()
self.add_event()
# wash the pool again, provide some protection for future values
self.stir()
# non-echoing Windows keyboard entry
_kb = 0
if not _kb:
try:
import msvcrt
class KeyboardEntry:
def getch(self):
c = msvcrt.getch()
if c in ('\000', '\xe0'):
# function key
c += msvcrt.getch()
return c
def close(self, delay = 0):
if delay:
time.sleep(delay)
while msvcrt.kbhit():
msvcrt.getch()
_kb = 1
except:
pass
# non-echoing Posix keyboard entry
if not _kb:
try:
import termios
class KeyboardEntry:
def __init__(self, fd = 0):
self._fd = fd
self._old = termios.tcgetattr(fd)
new = termios.tcgetattr(fd)
new[3]=new[3] & ~termios.ICANON & ~termios.ECHO
termios.tcsetattr(fd, termios.TCSANOW, new)
def getch(self):
termios.tcflush(0, termios.TCIFLUSH) # XXX Leave this in?
return os.read(self._fd, 1)
def close(self, delay = 0):
if delay:
time.sleep(delay)
termios.tcflush(self._fd, termios.TCIFLUSH)
termios.tcsetattr(self._fd, termios.TCSAFLUSH, self._old)
_kb = 1
except:
pass
class KeyboardRandomPool (PersistentRandomPool):
def __init__(self, *args, **kwargs):
PersistentRandomPool.__init__(self, *args, **kwargs)
def randomize(self, N = 0):
"Adds N bits of entropy to random pool. If N is 0, fill up pool."
import os, string, time
if N <= 0:
bits = self.bits - self.entropy
else:
bits = N*8
if bits == 0:
return
print bits,'bits of entropy are now required. Please type on the keyboard'
print 'until enough randomness has been accumulated.'
kb = KeyboardEntry()
s='' # We'll save the characters typed and add them to the pool.
hash = self._hash
e = 0
try:
while e < bits:
temp=str(bits-e).rjust(6)
os.write(1, temp)
s=s+kb.getch()
e += self.add_event(s)
os.write(1, 6*chr(8))
self.add_event(s+hash.new(s).digest() )
finally:
kb.close()
print '\n\007 Enough. Please wait a moment.\n'
self.stir_n() # wash the random pool.
kb.close(4)
if __name__ == '__main__':
pool = RandomPool()
print 'random pool entropy', pool.entropy, 'bits'
pool.add_event('something')
print `pool.get_bytes(100)`
import tempfile, os
fname = tempfile.mktemp()
pool = KeyboardRandomPool(filename=fname)
print 'keyboard random pool entropy', pool.entropy, 'bits'
pool.randomize()
print 'keyboard random pool entropy', pool.entropy, 'bits'
pool.randomize(128)
pool.save()
saved = open(fname, 'rb').read()
print 'saved', `saved`
print 'pool ', `pool._randpool.tostring()`
newpool = PersistentRandomPool(fname)
print 'persistent random pool entropy', pool.entropy, 'bits'
os.remove(fname)