/** Z80: portable Z80 emulator *******************************/ /** **/ /** Z80.c **/ /** **/ /** This file contains implementation for Z80 CPU. Don't **/ /** forget to provide RdZ80(), WrZ80(), InZ80(), OutZ80(), **/ /** LoopZ80(), and PatchZ80() functions to accomodate the **/ /** emulated machine's architecture. **/ /** **/ /** Copyright (C) Marat Fayzullin 1994,1995,1996,1997 **/ /** You are not allowed to distribute this software **/ /** commercially. Please, notify me, if you make any **/ /** changes to this file. **/ /*************************************************************/ #include "Z80.h" #include "Tables.h" #include /** INLINE ***************************************************/ /** Different compilers inline C functions differently. **/ /*************************************************************/ #ifdef __GNUC__ #define INLINE inline #else #define INLINE static #endif /** System-Dependent Stuff ***********************************/ /** This is system-dependent code put here to speed things **/ /** up. It has to stay inlined to be fast. **/ /*************************************************************/ #ifdef COLEM extern byte *RAM; INLINE byte RdZ80(word A) { return(RAM[A]); } #endif #ifdef MG extern byte *Page[]; INLINE byte RdZ80(word A) { return(Page[A>>13][A&0x1FFF]); } #endif #ifdef FMSX extern byte *RAM[],PSL[],SSLReg; INLINE byte RdZ80(word A) { if(A!=0xFFFF) return(RAM[A>>13][A&0x1FFF]); else return((PSL[3]==3)? ~SSLReg:RAM[7][0x1FFF]); } #endif #define S(Fl) R->AF.B.l|=Fl #define R(Fl) R->AF.B.l&=~(Fl) #define FLAGS(Rg,Fl) R->AF.B.l=Fl|ZSTable[Rg] #define M_RLC(Rg) \ R->AF.B.l=Rg>>7;Rg=(Rg<<1)|R->AF.B.l;R->AF.B.l|=PZSTable[Rg] #define M_RRC(Rg) \ R->AF.B.l=Rg&0x01;Rg=(Rg>>1)|(R->AF.B.l<<7);R->AF.B.l|=PZSTable[Rg] #define M_RL(Rg) \ if(Rg&0x80) \ { \ Rg=(Rg<<1)|(R->AF.B.l&C_FLAG); \ R->AF.B.l=PZSTable[Rg]|C_FLAG; \ } \ else \ { \ Rg=(Rg<<1)|(R->AF.B.l&C_FLAG); \ R->AF.B.l=PZSTable[Rg]; \ } #define M_RR(Rg) \ if(Rg&0x01) \ { \ Rg=(Rg>>1)|(R->AF.B.l<<7); \ R->AF.B.l=PZSTable[Rg]|C_FLAG; \ } \ else \ { \ Rg=(Rg>>1)|(R->AF.B.l<<7); \ R->AF.B.l=PZSTable[Rg]; \ } #define M_SLA(Rg) \ R->AF.B.l=Rg>>7;Rg<<=1;R->AF.B.l|=PZSTable[Rg] #define M_SRA(Rg) \ R->AF.B.l=Rg&C_FLAG;Rg=(Rg>>1)|(Rg&0x80);R->AF.B.l|=PZSTable[Rg] #define M_SLL(Rg) \ R->AF.B.l=Rg>>7;Rg=(Rg<<1)|0x01;R->AF.B.l|=PZSTable[Rg] #define M_SRL(Rg) \ R->AF.B.l=Rg&0x01;Rg>>=1;R->AF.B.l|=PZSTable[Rg] #define M_BIT(Bit,Rg) \ R->AF.B.l=(R->AF.B.l&~(N_FLAG|Z_FLAG))|H_FLAG|(Rg&(1<Rg.B.l=RdZ80(R->SP.W++);R->Rg.B.h=RdZ80(R->SP.W++) #define M_PUSH(Rg) \ WrZ80(--R->SP.W,R->Rg.B.h);WrZ80(--R->SP.W,R->Rg.B.l) #define M_CALL \ J.B.l=RdZ80(R->PC.W++);J.B.h=RdZ80(R->PC.W++); \ WrZ80(--R->SP.W,R->PC.B.h);WrZ80(--R->SP.W,R->PC.B.l); \ R->PC.W=J.W #define M_JP J.B.l=RdZ80(R->PC.W++);J.B.h=RdZ80(R->PC.W);R->PC.W=J.W #define M_JR R->PC.W+=(offset)RdZ80(R->PC.W)+1 #define M_RET R->PC.B.l=RdZ80(R->SP.W++);R->PC.B.h=RdZ80(R->SP.W++) #define M_RST(Ad) \ WrZ80(--R->SP.W,R->PC.B.h);WrZ80(--R->SP.W,R->PC.B.l);R->PC.W=Ad #define M_LDWORD(Rg) \ R->Rg.B.l=RdZ80(R->PC.W++);R->Rg.B.h=RdZ80(R->PC.W++) #define M_ADD(Rg) \ J.W=R->AF.B.h+Rg; \ R->AF.B.l= \ (~(R->AF.B.h^Rg)&(Rg^J.B.l)&0x80? V_FLAG:0)| \ J.B.h|ZSTable[J.B.l]| \ ((R->AF.B.h^Rg^J.B.l)&H_FLAG); \ R->AF.B.h=J.B.l #define M_SUB(Rg) \ J.W=R->AF.B.h-Rg; \ R->AF.B.l= \ ((R->AF.B.h^Rg)&(R->AF.B.h^J.B.l)&0x80? V_FLAG:0)| \ N_FLAG|-J.B.h|ZSTable[J.B.l]| \ ((R->AF.B.h^Rg^J.B.l)&H_FLAG); \ R->AF.B.h=J.B.l #define M_ADC(Rg) \ J.W=R->AF.B.h+Rg+(R->AF.B.l&C_FLAG); \ R->AF.B.l= \ (~(R->AF.B.h^Rg)&(Rg^J.B.l)&0x80? V_FLAG:0)| \ J.B.h|ZSTable[J.B.l]| \ ((R->AF.B.h^Rg^J.B.l)&H_FLAG); \ R->AF.B.h=J.B.l #define M_SBC(Rg) \ J.W=R->AF.B.h-Rg-(R->AF.B.l&C_FLAG); \ R->AF.B.l= \ ((R->AF.B.h^Rg)&(R->AF.B.h^J.B.l)&0x80? V_FLAG:0)| \ N_FLAG|-J.B.h|ZSTable[J.B.l]| \ ((R->AF.B.h^Rg^J.B.l)&H_FLAG); \ R->AF.B.h=J.B.l #define M_CP(Rg) \ J.W=R->AF.B.h-Rg; \ R->AF.B.l= \ ((R->AF.B.h^Rg)&(R->AF.B.h^J.B.l)&0x80? V_FLAG:0)| \ N_FLAG|-J.B.h|ZSTable[J.B.l]| \ ((R->AF.B.h^Rg^J.B.l)&H_FLAG) #define M_AND(Rg) R->AF.B.h&=Rg;R->AF.B.l=H_FLAG|PZSTable[R->AF.B.h] #define M_OR(Rg) R->AF.B.h|=Rg;R->AF.B.l=PZSTable[R->AF.B.h] #define M_XOR(Rg) R->AF.B.h^=Rg;R->AF.B.l=PZSTable[R->AF.B.h] #define M_IN(Rg) Rg=InZ80(R->BC.B.l);R->AF.B.l=PZSTable[Rg]|(R->AF.B.l&C_FLAG) #define M_INC(Rg) \ Rg++; \ R->AF.B.l= \ (R->AF.B.l&C_FLAG)|ZSTable[Rg]| \ (Rg==0x80? V_FLAG:0)|(Rg&0x0F? 0:H_FLAG) #define M_DEC(Rg) \ Rg--; \ R->AF.B.l= \ N_FLAG|(R->AF.B.l&C_FLAG)|ZSTable[Rg]| \ (Rg==0x7F? V_FLAG:0)|((Rg&0x0F)==0x0F? H_FLAG:0) #define M_ADDW(Rg1,Rg2) \ J.W=(R->Rg1.W+R->Rg2.W)&0xFFFF; \ R->AF.B.l= \ (R->AF.B.l&~(H_FLAG|N_FLAG|C_FLAG))| \ ((R->Rg1.W^R->Rg2.W^J.W)&0x1000? H_FLAG:0)| \ (((long)R->Rg1.W+(long)R->Rg2.W)&0x10000? C_FLAG:0); \ R->Rg1.W=J.W #define M_ADCW(Rg) \ I=R->AF.B.l&C_FLAG;J.W=(R->HL.W+R->Rg.W+I)&0xFFFF; \ R->AF.B.l= \ (((long)R->HL.W+(long)R->Rg.W+(long)I)&0x10000? C_FLAG:0)| \ (~(R->HL.W^R->Rg.W)&(R->Rg.W^J.W)&0x8000? V_FLAG:0)| \ ((R->HL.W^R->Rg.W^J.W)&0x1000? H_FLAG:0)| \ (J.W? 0:Z_FLAG)|(J.B.h&S_FLAG); \ R->HL.W=J.W #define M_SBCW(Rg) \ I=R->AF.B.l&C_FLAG;J.W=(R->HL.W-R->Rg.W-I)&0xFFFF; \ R->AF.B.l= \ N_FLAG| \ (((long)R->HL.W-(long)R->Rg.W-(long)I)&0x10000? C_FLAG:0)| \ ((R->HL.W^R->Rg.W)&(R->HL.W^J.W)&0x8000? V_FLAG:0)| \ ((R->HL.W^R->Rg.W^J.W)&0x1000? H_FLAG:0)| \ (J.W? 0:Z_FLAG)|(J.B.h&S_FLAG); \ R->HL.W=J.W enum Codes { NOP,LD_BC_WORD,LD_xBC_A,INC_BC,INC_B,DEC_B,LD_B_BYTE,RLCA, EX_AF_AF,ADD_HL_BC,LD_A_xBC,DEC_BC,INC_C,DEC_C,LD_C_BYTE,RRCA, DJNZ,LD_DE_WORD,LD_xDE_A,INC_DE,INC_D,DEC_D,LD_D_BYTE,RLA, JR,ADD_HL_DE,LD_A_xDE,DEC_DE,INC_E,DEC_E,LD_E_BYTE,RRA, JR_NZ,LD_HL_WORD,LD_xWORD_HL,INC_HL,INC_H,DEC_H,LD_H_BYTE,DAA, JR_Z,ADD_HL_HL,LD_HL_xWORD,DEC_HL,INC_L,DEC_L,LD_L_BYTE,CPL, JR_NC,LD_SP_WORD,LD_xWORD_A,INC_SP,INC_xHL,DEC_xHL,LD_xHL_BYTE,SCF, JR_C,ADD_HL_SP,LD_A_xWORD,DEC_SP,INC_A,DEC_A,LD_A_BYTE,CCF, LD_B_B,LD_B_C,LD_B_D,LD_B_E,LD_B_H,LD_B_L,LD_B_xHL,LD_B_A, LD_C_B,LD_C_C,LD_C_D,LD_C_E,LD_C_H,LD_C_L,LD_C_xHL,LD_C_A, LD_D_B,LD_D_C,LD_D_D,LD_D_E,LD_D_H,LD_D_L,LD_D_xHL,LD_D_A, LD_E_B,LD_E_C,LD_E_D,LD_E_E,LD_E_H,LD_E_L,LD_E_xHL,LD_E_A, LD_H_B,LD_H_C,LD_H_D,LD_H_E,LD_H_H,LD_H_L,LD_H_xHL,LD_H_A, LD_L_B,LD_L_C,LD_L_D,LD_L_E,LD_L_H,LD_L_L,LD_L_xHL,LD_L_A, LD_xHL_B,LD_xHL_C,LD_xHL_D,LD_xHL_E,LD_xHL_H,LD_xHL_L,HALT,LD_xHL_A, LD_A_B,LD_A_C,LD_A_D,LD_A_E,LD_A_H,LD_A_L,LD_A_xHL,LD_A_A, ADD_B,ADD_C,ADD_D,ADD_E,ADD_H,ADD_L,ADD_xHL,ADD_A, ADC_B,ADC_C,ADC_D,ADC_E,ADC_H,ADC_L,ADC_xHL,ADC_A, SUB_B,SUB_C,SUB_D,SUB_E,SUB_H,SUB_L,SUB_xHL,SUB_A, SBC_B,SBC_C,SBC_D,SBC_E,SBC_H,SBC_L,SBC_xHL,SBC_A, AND_B,AND_C,AND_D,AND_E,AND_H,AND_L,AND_xHL,AND_A, XOR_B,XOR_C,XOR_D,XOR_E,XOR_H,XOR_L,XOR_xHL,XOR_A, OR_B,OR_C,OR_D,OR_E,OR_H,OR_L,OR_xHL,OR_A, CP_B,CP_C,CP_D,CP_E,CP_H,CP_L,CP_xHL,CP_A, RET_NZ,POP_BC,JP_NZ,JP,CALL_NZ,PUSH_BC,ADD_BYTE,RST00, RET_Z,RET,JP_Z,PFX_CB,CALL_Z,CALL,ADC_BYTE,RST08, RET_NC,POP_DE,JP_NC,OUTA,CALL_NC,PUSH_DE,SUB_BYTE,RST10, RET_C,EXX,JP_C,INA,CALL_C,PFX_DD,SBC_BYTE,RST18, RET_PO,POP_HL,JP_PO,EX_HL_xSP,CALL_PO,PUSH_HL,AND_BYTE,RST20, RET_PE,LD_PC_HL,JP_PE,EX_DE_HL,CALL_PE,PFX_ED,XOR_BYTE,RST28, RET_P,POP_AF,JP_P,DI,CALL_P,PUSH_AF,OR_BYTE,RST30, RET_M,LD_SP_HL,JP_M,EI,CALL_M,PFX_FD,CP_BYTE,RST38 }; enum CodesCB { RLC_B,RLC_C,RLC_D,RLC_E,RLC_H,RLC_L,RLC_xHL,RLC_A, RRC_B,RRC_C,RRC_D,RRC_E,RRC_H,RRC_L,RRC_xHL,RRC_A, RL_B,RL_C,RL_D,RL_E,RL_H,RL_L,RL_xHL,RL_A, RR_B,RR_C,RR_D,RR_E,RR_H,RR_L,RR_xHL,RR_A, SLA_B,SLA_C,SLA_D,SLA_E,SLA_H,SLA_L,SLA_xHL,SLA_A, SRA_B,SRA_C,SRA_D,SRA_E,SRA_H,SRA_L,SRA_xHL,SRA_A, SLL_B,SLL_C,SLL_D,SLL_E,SLL_H,SLL_L,SLL_xHL,SLL_A, SRL_B,SRL_C,SRL_D,SRL_E,SRL_H,SRL_L,SRL_xHL,SRL_A, BIT0_B,BIT0_C,BIT0_D,BIT0_E,BIT0_H,BIT0_L,BIT0_xHL,BIT0_A, BIT1_B,BIT1_C,BIT1_D,BIT1_E,BIT1_H,BIT1_L,BIT1_xHL,BIT1_A, BIT2_B,BIT2_C,BIT2_D,BIT2_E,BIT2_H,BIT2_L,BIT2_xHL,BIT2_A, BIT3_B,BIT3_C,BIT3_D,BIT3_E,BIT3_H,BIT3_L,BIT3_xHL,BIT3_A, BIT4_B,BIT4_C,BIT4_D,BIT4_E,BIT4_H,BIT4_L,BIT4_xHL,BIT4_A, BIT5_B,BIT5_C,BIT5_D,BIT5_E,BIT5_H,BIT5_L,BIT5_xHL,BIT5_A, BIT6_B,BIT6_C,BIT6_D,BIT6_E,BIT6_H,BIT6_L,BIT6_xHL,BIT6_A, BIT7_B,BIT7_C,BIT7_D,BIT7_E,BIT7_H,BIT7_L,BIT7_xHL,BIT7_A, RES0_B,RES0_C,RES0_D,RES0_E,RES0_H,RES0_L,RES0_xHL,RES0_A, RES1_B,RES1_C,RES1_D,RES1_E,RES1_H,RES1_L,RES1_xHL,RES1_A, RES2_B,RES2_C,RES2_D,RES2_E,RES2_H,RES2_L,RES2_xHL,RES2_A, RES3_B,RES3_C,RES3_D,RES3_E,RES3_H,RES3_L,RES3_xHL,RES3_A, RES4_B,RES4_C,RES4_D,RES4_E,RES4_H,RES4_L,RES4_xHL,RES4_A, RES5_B,RES5_C,RES5_D,RES5_E,RES5_H,RES5_L,RES5_xHL,RES5_A, RES6_B,RES6_C,RES6_D,RES6_E,RES6_H,RES6_L,RES6_xHL,RES6_A, RES7_B,RES7_C,RES7_D,RES7_E,RES7_H,RES7_L,RES7_xHL,RES7_A, SET0_B,SET0_C,SET0_D,SET0_E,SET0_H,SET0_L,SET0_xHL,SET0_A, SET1_B,SET1_C,SET1_D,SET1_E,SET1_H,SET1_L,SET1_xHL,SET1_A, SET2_B,SET2_C,SET2_D,SET2_E,SET2_H,SET2_L,SET2_xHL,SET2_A, SET3_B,SET3_C,SET3_D,SET3_E,SET3_H,SET3_L,SET3_xHL,SET3_A, SET4_B,SET4_C,SET4_D,SET4_E,SET4_H,SET4_L,SET4_xHL,SET4_A, SET5_B,SET5_C,SET5_D,SET5_E,SET5_H,SET5_L,SET5_xHL,SET5_A, SET6_B,SET6_C,SET6_D,SET6_E,SET6_H,SET6_L,SET6_xHL,SET6_A, SET7_B,SET7_C,SET7_D,SET7_E,SET7_H,SET7_L,SET7_xHL,SET7_A }; enum CodesED { DB_00,DB_01,DB_02,DB_03,DB_04,DB_05,DB_06,DB_07, DB_08,DB_09,DB_0A,DB_0B,DB_0C,DB_0D,DB_0E,DB_0F, DB_10,DB_11,DB_12,DB_13,DB_14,DB_15,DB_16,DB_17, DB_18,DB_19,DB_1A,DB_1B,DB_1C,DB_1D,DB_1E,DB_1F, DB_20,DB_21,DB_22,DB_23,DB_24,DB_25,DB_26,DB_27, DB_28,DB_29,DB_2A,DB_2B,DB_2C,DB_2D,DB_2E,DB_2F, DB_30,DB_31,DB_32,DB_33,DB_34,DB_35,DB_36,DB_37, DB_38,DB_39,DB_3A,DB_3B,DB_3C,DB_3D,DB_3E,DB_3F, IN_B_xC,OUT_xC_B,SBC_HL_BC,LD_xWORDe_BC,NEG,RETN,IM_0,LD_I_A, IN_C_xC,OUT_xC_C,ADC_HL_BC,LD_BC_xWORDe,DB_4C,RETI,DB_,LD_R_A, IN_D_xC,OUT_xC_D,SBC_HL_DE,LD_xWORDe_DE,DB_54,DB_55,IM_1,LD_A_I, IN_E_xC,OUT_xC_E,ADC_HL_DE,LD_DE_xWORDe,DB_5C,DB_5D,IM_2,LD_A_R, IN_H_xC,OUT_xC_H,SBC_HL_HL,LD_xWORDe_HL,DB_64,DB_65,DB_66,RRD, IN_L_xC,OUT_xC_L,ADC_HL_HL,LD_HL_xWORDe,DB_6C,DB_6D,DB_6E,RLD, IN_F_xC,DB_71,SBC_HL_SP,LD_xWORDe_SP,DB_74,DB_75,DB_76,DB_77, IN_A_xC,OUT_xC_A,ADC_HL_SP,LD_SP_xWORDe,DB_7C,DB_7D,DB_7E,DB_7F, DB_80,DB_81,DB_82,DB_83,DB_84,DB_85,DB_86,DB_87, DB_88,DB_89,DB_8A,DB_8B,DB_8C,DB_8D,DB_8E,DB_8F, DB_90,DB_91,DB_92,DB_93,DB_94,DB_95,DB_96,DB_97, DB_98,DB_99,DB_9A,DB_9B,DB_9C,DB_9D,DB_9E,DB_9F, LDI,CPI,INI,OUTI,DB_A4,DB_A5,DB_A6,DB_A7, LDD,CPD,IND,OUTD,DB_AC,DB_AD,DB_AE,DB_AF, LDIR,CPIR,INIR,OTIR,DB_B4,DB_B5,DB_B6,DB_B7, LDDR,CPDR,INDR,OTDR,DB_BC,DB_BD,DB_BE,DB_BF, DB_C0,DB_C1,DB_C2,DB_C3,DB_C4,DB_C5,DB_C6,DB_C7, DB_C8,DB_C9,DB_CA,DB_CB,DB_CC,DB_CD,DB_CE,DB_CF, DB_D0,DB_D1,DB_D2,DB_D3,DB_D4,DB_D5,DB_D6,DB_D7, DB_D8,DB_D9,DB_DA,DB_DB,DB_DC,DB_DD,DB_DE,DB_DF, DB_E0,DB_E1,DB_E2,DB_E3,DB_E4,DB_E5,DB_E6,DB_E7, DB_E8,DB_E9,DB_EA,DB_EB,DB_EC,DB_ED,DB_EE,DB_EF, DB_F0,DB_F1,DB_F2,DB_F3,DB_F4,DB_F5,DB_F6,DB_F7, DB_F8,DB_F9,DB_FA,DB_FB,DB_FC,DB_FD,DB_FE,DB_FF }; static void CodesCB(register Z80 *R) { register byte I; I=RdZ80(R->PC.W++); R->ICount-=CyclesCB[I]; switch(I) { #include "CodesCB.h" default: if(R->TrapBadOps) printf ( "[Z80 %lX] Unrecognized instruction: CB %02X at PC=%04X\n", (long)(R->User),RdZ80(R->PC.W-1),R->PC.W-2 ); } } static void CodesDDCB(register Z80 *R) { register pair J; register byte I; #define XX IX J.W=R->XX.W+(offset)RdZ80(R->PC.W++); I=RdZ80(R->PC.W++); R->ICount-=CyclesXXCB[I]; switch(I) { #include "CodesXCB.h" default: if(R->TrapBadOps) printf ( "[Z80 %lX] Unrecognized instruction: DD CB %02X %02X at PC=%04X\n", (long)(R->User),RdZ80(R->PC.W-2),RdZ80(R->PC.W-1),R->PC.W-4 ); } #undef XX } static void CodesFDCB(register Z80 *R) { register pair J; register byte I; #define XX IY J.W=R->XX.W+(offset)RdZ80(R->PC.W++); I=RdZ80(R->PC.W++); R->ICount-=CyclesXXCB[I]; switch(I) { #include "CodesXCB.h" default: if(R->TrapBadOps) printf ( "[Z80 %lX] Unrecognized instruction: FD CB %02X %02X at PC=%04X\n", (long)R->User,RdZ80(R->PC.W-2),RdZ80(R->PC.W-1),R->PC.W-4 ); } #undef XX } static void CodesED(register Z80 *R) { register byte I; register pair J; I=RdZ80(R->PC.W++); R->ICount-=CyclesED[I]; switch(I) { #include "CodesED.h" case PFX_ED: R->PC.W--;break; default: if(R->TrapBadOps) printf ( "[Z80 %lX] Unrecognized instruction: ED %02X at PC=%04X\n", (long)R->User,RdZ80(R->PC.W-1),R->PC.W-2 ); } } static void CodesDD(register Z80 *R) { register byte I; register pair J; #define XX IX I=RdZ80(R->PC.W++); R->ICount-=CyclesXX[I]; switch(I) { #include "CodesXX.h" case PFX_FD: case PFX_DD: R->PC.W--;break; case PFX_CB: CodesDDCB(R);break; case HALT: R->PC.W--;R->IFF|=0x80;R->ICount=0;break; default: if(R->TrapBadOps) printf ( "[Z80 %lX] Unrecognized instruction: DD %02X at PC=%04X\n", (long)R->User,RdZ80(R->PC.W-1),R->PC.W-2 ); } #undef XX } static void CodesFD(register Z80 *R) { register byte I; register pair J; #define XX IY I=RdZ80(R->PC.W++); R->ICount-=CyclesXX[I]; switch(I) { #include "CodesXX.h" case PFX_FD: case PFX_DD: R->PC.W--;break; case PFX_CB: CodesFDCB(R);break; case HALT: R->PC.W--;R->IFF|=0x80;R->ICount=0;break; default: printf ( "Unrecognized instruction: FD %02X at PC=%04X\n", RdZ80(R->PC.W-1),R->PC.W-2 ); } #undef XX } /** ResetZ80() ***********************************************/ /** This function can be used to reset the register struct **/ /** before starting execution with Z80(). It sets the **/ /** registers to their supposed initial values. **/ /*************************************************************/ void ResetZ80(Z80 *R) { R->PC.W=0x0000;R->SP.W=0xF000; R->AF.W=R->BC.W=R->DE.W=R->HL.W=0x0000; R->AF1.W=R->BC1.W=R->DE1.W=R->HL1.W=0x0000; R->IX.W=R->IY.W=0x0000; R->I=0x00;R->IFF=0x00; R->ICount=R->IPeriod; R->IRequest=INT_NONE; } /** ExecZ80() ************************************************/ /** This function will execute a single Z80 opcode. It will **/ /** then return next PC, and current register values in R. **/ /*************************************************************/ word ExecZ80(Z80 *R) { register byte I; register pair J; I=RdZ80(R->PC.W++); R->ICount-=Cycles[I]; switch(I) { #include "Codes.h" case PFX_CB: CodesCB(R);break; case PFX_ED: CodesED(R);break; case PFX_FD: CodesFD(R);break; case PFX_DD: CodesDD(R);break; } /* We are done */ return(R->PC.W); } /** IntZ80() *************************************************/ /** This function will generate interrupt of given vector. **/ /*************************************************************/ void IntZ80(Z80 *R,word Vector) { if((R->IFF&0x01)||(Vector==INT_NMI)) { /* Experimental V Shouldn't disable all interrupts? */ R->IFF=(R->IFF&0x9E)|((R->IFF&0x01)<<6); if(R->IFF&0x80) { R->PC.W++;R->IFF&=0x7F; } M_PUSH(PC); if(Vector==INT_NMI) R->PC.W=INT_NMI; else if(R->IFF&0x04) { Vector=(Vector&0xFF)|((word)(R->I)<<8); R->PC.B.l=RdZ80(Vector++); R->PC.B.h=RdZ80(Vector); } else if(R->IFF&0x02) R->PC.W=INT_IRQ; else R->PC.W=Vector; } } /** RunZ80() *************************************************/ /** This function will run Z80 code until an LoopZ80() call **/ /** returns INT_QUIT. It will return the PC at which **/ /** emulation stopped, and current register values in R. **/ /*************************************************************/ word RunZ80(Z80 *R) { register byte I; register pair J; for(;;) { #ifdef DEBUG /* Turn tracing on when reached trap address */ if(R->PC.W==R->Trap) R->Trace=1; /* Call single-step debugger, exit if requested */ if(R->Trace) if(!DebugZ80(R)) return(R->PC.W); #endif I=RdZ80(R->PC.W++); R->ICount-=Cycles[I]; switch(I) { #include "Codes.h" case PFX_CB: CodesCB(R);break; case PFX_ED: CodesED(R);break; case PFX_FD: CodesFD(R);break; case PFX_DD: CodesDD(R);break; } /* If cycle counter expired... */ if(R->ICount<=0) { /* If we have come after EI, get address from IRequest */ /* Otherwise, get it from the loop handler */ if(R->IFF&0x20) { J.W=R->IRequest; /* Get pending interrupt */ R->ICount+=R->IBackup-1; /* Restore the ICount */ R->IFF&=0xDF; /* Done with AfterEI state */ } else { J.W=LoopZ80(R); /* Call periodic handler */ R->ICount=R->IPeriod; /* Reset the cycle counter */ } if(J.W==INT_QUIT) return(R->PC.W); /* Exit if INT_QUIT */ if(J.W!=INT_NONE) IntZ80(R,J.W); /* Int-pt if needed */ } } /* Execution stopped */ return(R->PC.W); }