648 lines
23 KiB
Fortran
648 lines
23 KiB
Fortran
c-----------------------------------------------------------------------
|
|
c\BeginDoc
|
|
c
|
|
c\Name: snapps
|
|
c
|
|
c\Description:
|
|
c Given the Arnoldi factorization
|
|
c
|
|
c A*V_{k} - V_{k}*H_{k} = r_{k+p}*e_{k+p}^T,
|
|
c
|
|
c apply NP implicit shifts resulting in
|
|
c
|
|
c A*(V_{k}*Q) - (V_{k}*Q)*(Q^T* H_{k}*Q) = r_{k+p}*e_{k+p}^T * Q
|
|
c
|
|
c where Q is an orthogonal matrix which is the product of rotations
|
|
c and reflections resulting from the NP bulge chage sweeps.
|
|
c The updated Arnoldi factorization becomes:
|
|
c
|
|
c A*VNEW_{k} - VNEW_{k}*HNEW_{k} = rnew_{k}*e_{k}^T.
|
|
c
|
|
c\Usage:
|
|
c call snapps
|
|
c ( N, KEV, NP, SHIFTR, SHIFTI, V, LDV, H, LDH, RESID, Q, LDQ,
|
|
c WORKL, WORKD )
|
|
c
|
|
c\Arguments
|
|
c N Integer. (INPUT)
|
|
c Problem size, i.e. size of matrix A.
|
|
c
|
|
c KEV Integer. (INPUT/OUTPUT)
|
|
c KEV+NP is the size of the input matrix H.
|
|
c KEV is the size of the updated matrix HNEW. KEV is only
|
|
c updated on ouput when fewer than NP shifts are applied in
|
|
c order to keep the conjugate pair together.
|
|
c
|
|
c NP Integer. (INPUT)
|
|
c Number of implicit shifts to be applied.
|
|
c
|
|
c SHIFTR, Real array of length NP. (INPUT)
|
|
c SHIFTI Real and imaginary part of the shifts to be applied.
|
|
c Upon, entry to snapps, the shifts must be sorted so that the
|
|
c conjugate pairs are in consecutive locations.
|
|
c
|
|
c V Real N by (KEV+NP) array. (INPUT/OUTPUT)
|
|
c On INPUT, V contains the current KEV+NP Arnoldi vectors.
|
|
c On OUTPUT, V contains the updated KEV Arnoldi vectors
|
|
c in the first KEV columns of V.
|
|
c
|
|
c LDV Integer. (INPUT)
|
|
c Leading dimension of V exactly as declared in the calling
|
|
c program.
|
|
c
|
|
c H Real (KEV+NP) by (KEV+NP) array. (INPUT/OUTPUT)
|
|
c On INPUT, H contains the current KEV+NP by KEV+NP upper
|
|
c Hessenber matrix of the Arnoldi factorization.
|
|
c On OUTPUT, H contains the updated KEV by KEV upper Hessenberg
|
|
c matrix in the KEV leading submatrix.
|
|
c
|
|
c LDH Integer. (INPUT)
|
|
c Leading dimension of H exactly as declared in the calling
|
|
c program.
|
|
c
|
|
c RESID Real array of length N. (INPUT/OUTPUT)
|
|
c On INPUT, RESID contains the the residual vector r_{k+p}.
|
|
c On OUTPUT, RESID is the update residual vector rnew_{k}
|
|
c in the first KEV locations.
|
|
c
|
|
c Q Real KEV+NP by KEV+NP work array. (WORKSPACE)
|
|
c Work array used to accumulate the rotations and reflections
|
|
c during the bulge chase sweep.
|
|
c
|
|
c LDQ Integer. (INPUT)
|
|
c Leading dimension of Q exactly as declared in the calling
|
|
c program.
|
|
c
|
|
c WORKL Real work array of length (KEV+NP). (WORKSPACE)
|
|
c Private (replicated) array on each PE or array allocated on
|
|
c the front end.
|
|
c
|
|
c WORKD Real work array of length 2*N. (WORKSPACE)
|
|
c Distributed array used in the application of the accumulated
|
|
c orthogonal matrix Q.
|
|
c
|
|
c\EndDoc
|
|
c
|
|
c-----------------------------------------------------------------------
|
|
c
|
|
c\BeginLib
|
|
c
|
|
c\Local variables:
|
|
c xxxxxx real
|
|
c
|
|
c\References:
|
|
c 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
|
|
c a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
|
|
c pp 357-385.
|
|
c
|
|
c\Routines called:
|
|
c ivout ARPACK utility routine that prints integers.
|
|
c second ARPACK utility routine for timing.
|
|
c smout ARPACK utility routine that prints matrices.
|
|
c svout ARPACK utility routine that prints vectors.
|
|
c slabad LAPACK routine that computes machine constants.
|
|
c slacpy LAPACK matrix copy routine.
|
|
c slamch LAPACK routine that determines machine constants.
|
|
c slanhs LAPACK routine that computes various norms of a matrix.
|
|
c slapy2 LAPACK routine to compute sqrt(x**2+y**2) carefully.
|
|
c slarf LAPACK routine that applies Householder reflection to
|
|
c a matrix.
|
|
c slarfg LAPACK Householder reflection construction routine.
|
|
c slartg LAPACK Givens rotation construction routine.
|
|
c slaset LAPACK matrix initialization routine.
|
|
c sgemv Level 2 BLAS routine for matrix vector multiplication.
|
|
c saxpy Level 1 BLAS that computes a vector triad.
|
|
c scopy Level 1 BLAS that copies one vector to another .
|
|
c sscal Level 1 BLAS that scales a vector.
|
|
c
|
|
c\Author
|
|
c Danny Sorensen Phuong Vu
|
|
c Richard Lehoucq CRPC / Rice University
|
|
c Dept. of Computational & Houston, Texas
|
|
c Applied Mathematics
|
|
c Rice University
|
|
c Houston, Texas
|
|
c
|
|
c\Revision history:
|
|
c xx/xx/92: Version ' 2.4'
|
|
c
|
|
c\SCCS Information: @(#)
|
|
c FILE: napps.F SID: 2.4 DATE OF SID: 3/28/97 RELEASE: 2
|
|
c
|
|
c\Remarks
|
|
c 1. In this version, each shift is applied to all the sublocks of
|
|
c the Hessenberg matrix H and not just to the submatrix that it
|
|
c comes from. Deflation as in LAPACK routine slahqr (QR algorithm
|
|
c for upper Hessenberg matrices ) is used.
|
|
c The subdiagonals of H are enforced to be non-negative.
|
|
c
|
|
c\EndLib
|
|
c
|
|
c-----------------------------------------------------------------------
|
|
c
|
|
subroutine snapps
|
|
& ( n, kev, np, shiftr, shifti, v, ldv, h, ldh, resid, q, ldq,
|
|
& workl, workd )
|
|
c
|
|
c %----------------------------------------------------%
|
|
c | Include files for debugging and timing information |
|
|
c %----------------------------------------------------%
|
|
c
|
|
include 'debug.h'
|
|
include 'stat.h'
|
|
c
|
|
c %------------------%
|
|
c | Scalar Arguments |
|
|
c %------------------%
|
|
c
|
|
integer kev, ldh, ldq, ldv, n, np
|
|
c
|
|
c %-----------------%
|
|
c | Array Arguments |
|
|
c %-----------------%
|
|
c
|
|
Real
|
|
& h(ldh,kev+np), resid(n), shifti(np), shiftr(np),
|
|
& v(ldv,kev+np), q(ldq,kev+np), workd(2*n), workl(kev+np)
|
|
c
|
|
c %------------%
|
|
c | Parameters |
|
|
c %------------%
|
|
c
|
|
Real
|
|
& one, zero
|
|
parameter (one = 1.0E+0, zero = 0.0E+0)
|
|
c
|
|
c %------------------------%
|
|
c | Local Scalars & Arrays |
|
|
c %------------------------%
|
|
c
|
|
integer i, iend, ir, istart, j, jj, kplusp, msglvl, nr
|
|
logical cconj, first
|
|
Real
|
|
& c, f, g, h11, h12, h21, h22, h32, ovfl, r, s, sigmai,
|
|
& sigmar, smlnum, ulp, unfl, u(3), t, tau, tst1
|
|
save first, ovfl, smlnum, ulp, unfl
|
|
c
|
|
c %----------------------%
|
|
c | External Subroutines |
|
|
c %----------------------%
|
|
c
|
|
external saxpy, scopy, sscal, slacpy, slarfg, slarf,
|
|
& slaset, slabad, second, slartg
|
|
c
|
|
c %--------------------%
|
|
c | External Functions |
|
|
c %--------------------%
|
|
c
|
|
Real
|
|
& slamch, slanhs, slapy2
|
|
external slamch, slanhs, slapy2
|
|
c
|
|
c %----------------------%
|
|
c | Intrinsics Functions |
|
|
c %----------------------%
|
|
c
|
|
intrinsic abs, max, min
|
|
c
|
|
c %----------------%
|
|
c | Data statments |
|
|
c %----------------%
|
|
c
|
|
data first / .true. /
|
|
c
|
|
c %-----------------------%
|
|
c | Executable Statements |
|
|
c %-----------------------%
|
|
c
|
|
if (first) then
|
|
c
|
|
c %-----------------------------------------------%
|
|
c | Set machine-dependent constants for the |
|
|
c | stopping criterion. If norm(H) <= sqrt(OVFL), |
|
|
c | overflow should not occur. |
|
|
c | REFERENCE: LAPACK subroutine slahqr |
|
|
c %-----------------------------------------------%
|
|
c
|
|
unfl = slamch( 'safe minimum' )
|
|
ovfl = one / unfl
|
|
call slabad( unfl, ovfl )
|
|
ulp = slamch( 'precision' )
|
|
smlnum = unfl*( n / ulp )
|
|
first = .false.
|
|
end if
|
|
c
|
|
c %-------------------------------%
|
|
c | Initialize timing statistics |
|
|
c | & message level for debugging |
|
|
c %-------------------------------%
|
|
c
|
|
call second (t0)
|
|
msglvl = mnapps
|
|
kplusp = kev + np
|
|
c
|
|
c %--------------------------------------------%
|
|
c | Initialize Q to the identity to accumulate |
|
|
c | the rotations and reflections |
|
|
c %--------------------------------------------%
|
|
c
|
|
call slaset ('All', kplusp, kplusp, zero, one, q, ldq)
|
|
c
|
|
c %----------------------------------------------%
|
|
c | Quick return if there are no shifts to apply |
|
|
c %----------------------------------------------%
|
|
c
|
|
if (np .eq. 0) go to 9000
|
|
c
|
|
c %----------------------------------------------%
|
|
c | Chase the bulge with the application of each |
|
|
c | implicit shift. Each shift is applied to the |
|
|
c | whole matrix including each block. |
|
|
c %----------------------------------------------%
|
|
c
|
|
cconj = .false.
|
|
do 110 jj = 1, np
|
|
sigmar = shiftr(jj)
|
|
sigmai = shifti(jj)
|
|
c
|
|
if (msglvl .gt. 2 ) then
|
|
call ivout (logfil, 1, jj, ndigit,
|
|
& '_napps: shift number.')
|
|
call svout (logfil, 1, sigmar, ndigit,
|
|
& '_napps: The real part of the shift ')
|
|
call svout (logfil, 1, sigmai, ndigit,
|
|
& '_napps: The imaginary part of the shift ')
|
|
end if
|
|
c
|
|
c %-------------------------------------------------%
|
|
c | The following set of conditionals is necessary |
|
|
c | in order that complex conjugate pairs of shifts |
|
|
c | are applied together or not at all. |
|
|
c %-------------------------------------------------%
|
|
c
|
|
if ( cconj ) then
|
|
c
|
|
c %-----------------------------------------%
|
|
c | cconj = .true. means the previous shift |
|
|
c | had non-zero imaginary part. |
|
|
c %-----------------------------------------%
|
|
c
|
|
cconj = .false.
|
|
go to 110
|
|
else if ( jj .lt. np .and. abs( sigmai ) .gt. zero ) then
|
|
c
|
|
c %------------------------------------%
|
|
c | Start of a complex conjugate pair. |
|
|
c %------------------------------------%
|
|
c
|
|
cconj = .true.
|
|
else if ( jj .eq. np .and. abs( sigmai ) .gt. zero ) then
|
|
c
|
|
c %----------------------------------------------%
|
|
c | The last shift has a nonzero imaginary part. |
|
|
c | Don't apply it; thus the order of the |
|
|
c | compressed H is order KEV+1 since only np-1 |
|
|
c | were applied. |
|
|
c %----------------------------------------------%
|
|
c
|
|
kev = kev + 1
|
|
go to 110
|
|
end if
|
|
istart = 1
|
|
20 continue
|
|
c
|
|
c %--------------------------------------------------%
|
|
c | if sigmai = 0 then |
|
|
c | Apply the jj-th shift ... |
|
|
c | else |
|
|
c | Apply the jj-th and (jj+1)-th together ... |
|
|
c | (Note that jj < np at this point in the code) |
|
|
c | end |
|
|
c | to the current block of H. The next do loop |
|
|
c | determines the current block ; |
|
|
c %--------------------------------------------------%
|
|
c
|
|
do 30 i = istart, kplusp-1
|
|
c
|
|
c %----------------------------------------%
|
|
c | Check for splitting and deflation. Use |
|
|
c | a standard test as in the QR algorithm |
|
|
c | REFERENCE: LAPACK subroutine slahqr |
|
|
c %----------------------------------------%
|
|
c
|
|
tst1 = abs( h( i, i ) ) + abs( h( i+1, i+1 ) )
|
|
if( tst1.eq.zero )
|
|
& tst1 = slanhs( '1', kplusp-jj+1, h, ldh, workl )
|
|
if( abs( h( i+1,i ) ).le.max( ulp*tst1, smlnum ) ) then
|
|
if (msglvl .gt. 0) then
|
|
call ivout (logfil, 1, i, ndigit,
|
|
& '_napps: matrix splitting at row/column no.')
|
|
call ivout (logfil, 1, jj, ndigit,
|
|
& '_napps: matrix splitting with shift number.')
|
|
call svout (logfil, 1, h(i+1,i), ndigit,
|
|
& '_napps: off diagonal element.')
|
|
end if
|
|
iend = i
|
|
h(i+1,i) = zero
|
|
go to 40
|
|
end if
|
|
30 continue
|
|
iend = kplusp
|
|
40 continue
|
|
c
|
|
if (msglvl .gt. 2) then
|
|
call ivout (logfil, 1, istart, ndigit,
|
|
& '_napps: Start of current block ')
|
|
call ivout (logfil, 1, iend, ndigit,
|
|
& '_napps: End of current block ')
|
|
end if
|
|
c
|
|
c %------------------------------------------------%
|
|
c | No reason to apply a shift to block of order 1 |
|
|
c %------------------------------------------------%
|
|
c
|
|
if ( istart .eq. iend ) go to 100
|
|
c
|
|
c %------------------------------------------------------%
|
|
c | If istart + 1 = iend then no reason to apply a |
|
|
c | complex conjugate pair of shifts on a 2 by 2 matrix. |
|
|
c %------------------------------------------------------%
|
|
c
|
|
if ( istart + 1 .eq. iend .and. abs( sigmai ) .gt. zero )
|
|
& go to 100
|
|
c
|
|
h11 = h(istart,istart)
|
|
h21 = h(istart+1,istart)
|
|
if ( abs( sigmai ) .le. zero ) then
|
|
c
|
|
c %---------------------------------------------%
|
|
c | Real-valued shift ==> apply single shift QR |
|
|
c %---------------------------------------------%
|
|
c
|
|
f = h11 - sigmar
|
|
g = h21
|
|
c
|
|
do 80 i = istart, iend-1
|
|
c
|
|
c %-----------------------------------------------------%
|
|
c | Contruct the plane rotation G to zero out the bulge |
|
|
c %-----------------------------------------------------%
|
|
c
|
|
call slartg (f, g, c, s, r)
|
|
if (i .gt. istart) then
|
|
c
|
|
c %-------------------------------------------%
|
|
c | The following ensures that h(1:iend-1,1), |
|
|
c | the first iend-2 off diagonal of elements |
|
|
c | H, remain non negative. |
|
|
c %-------------------------------------------%
|
|
c
|
|
if (r .lt. zero) then
|
|
r = -r
|
|
c = -c
|
|
s = -s
|
|
end if
|
|
h(i,i-1) = r
|
|
h(i+1,i-1) = zero
|
|
end if
|
|
c
|
|
c %---------------------------------------------%
|
|
c | Apply rotation to the left of H; H <- G'*H |
|
|
c %---------------------------------------------%
|
|
c
|
|
do 50 j = i, kplusp
|
|
t = c*h(i,j) + s*h(i+1,j)
|
|
h(i+1,j) = -s*h(i,j) + c*h(i+1,j)
|
|
h(i,j) = t
|
|
50 continue
|
|
c
|
|
c %---------------------------------------------%
|
|
c | Apply rotation to the right of H; H <- H*G |
|
|
c %---------------------------------------------%
|
|
c
|
|
do 60 j = 1, min(i+2,iend)
|
|
t = c*h(j,i) + s*h(j,i+1)
|
|
h(j,i+1) = -s*h(j,i) + c*h(j,i+1)
|
|
h(j,i) = t
|
|
60 continue
|
|
c
|
|
c %----------------------------------------------------%
|
|
c | Accumulate the rotation in the matrix Q; Q <- Q*G |
|
|
c %----------------------------------------------------%
|
|
c
|
|
do 70 j = 1, min( i+jj, kplusp )
|
|
t = c*q(j,i) + s*q(j,i+1)
|
|
q(j,i+1) = - s*q(j,i) + c*q(j,i+1)
|
|
q(j,i) = t
|
|
70 continue
|
|
c
|
|
c %---------------------------%
|
|
c | Prepare for next rotation |
|
|
c %---------------------------%
|
|
c
|
|
if (i .lt. iend-1) then
|
|
f = h(i+1,i)
|
|
g = h(i+2,i)
|
|
end if
|
|
80 continue
|
|
c
|
|
c %-----------------------------------%
|
|
c | Finished applying the real shift. |
|
|
c %-----------------------------------%
|
|
c
|
|
else
|
|
c
|
|
c %----------------------------------------------------%
|
|
c | Complex conjugate shifts ==> apply double shift QR |
|
|
c %----------------------------------------------------%
|
|
c
|
|
h12 = h(istart,istart+1)
|
|
h22 = h(istart+1,istart+1)
|
|
h32 = h(istart+2,istart+1)
|
|
c
|
|
c %---------------------------------------------------------%
|
|
c | Compute 1st column of (H - shift*I)*(H - conj(shift)*I) |
|
|
c %---------------------------------------------------------%
|
|
c
|
|
s = 2.0*sigmar
|
|
t = slapy2 ( sigmar, sigmai )
|
|
u(1) = ( h11 * (h11 - s) + t * t ) / h21 + h12
|
|
u(2) = h11 + h22 - s
|
|
u(3) = h32
|
|
c
|
|
do 90 i = istart, iend-1
|
|
c
|
|
nr = min ( 3, iend-i+1 )
|
|
c
|
|
c %-----------------------------------------------------%
|
|
c | Construct Householder reflector G to zero out u(1). |
|
|
c | G is of the form I - tau*( 1 u )' * ( 1 u' ). |
|
|
c %-----------------------------------------------------%
|
|
c
|
|
call slarfg ( nr, u(1), u(2), 1, tau )
|
|
c
|
|
if (i .gt. istart) then
|
|
h(i,i-1) = u(1)
|
|
h(i+1,i-1) = zero
|
|
if (i .lt. iend-1) h(i+2,i-1) = zero
|
|
end if
|
|
u(1) = one
|
|
c
|
|
c %--------------------------------------%
|
|
c | Apply the reflector to the left of H |
|
|
c %--------------------------------------%
|
|
c
|
|
call slarf ('Left', nr, kplusp-i+1, u, 1, tau,
|
|
& h(i,i), ldh, workl)
|
|
c
|
|
c %---------------------------------------%
|
|
c | Apply the reflector to the right of H |
|
|
c %---------------------------------------%
|
|
c
|
|
ir = min ( i+3, iend )
|
|
call slarf ('Right', ir, nr, u, 1, tau,
|
|
& h(1,i), ldh, workl)
|
|
c
|
|
c %-----------------------------------------------------%
|
|
c | Accumulate the reflector in the matrix Q; Q <- Q*G |
|
|
c %-----------------------------------------------------%
|
|
c
|
|
call slarf ('Right', kplusp, nr, u, 1, tau,
|
|
& q(1,i), ldq, workl)
|
|
c
|
|
c %----------------------------%
|
|
c | Prepare for next reflector |
|
|
c %----------------------------%
|
|
c
|
|
if (i .lt. iend-1) then
|
|
u(1) = h(i+1,i)
|
|
u(2) = h(i+2,i)
|
|
if (i .lt. iend-2) u(3) = h(i+3,i)
|
|
end if
|
|
c
|
|
90 continue
|
|
c
|
|
c %--------------------------------------------%
|
|
c | Finished applying a complex pair of shifts |
|
|
c | to the current block |
|
|
c %--------------------------------------------%
|
|
c
|
|
end if
|
|
c
|
|
100 continue
|
|
c
|
|
c %---------------------------------------------------------%
|
|
c | Apply the same shift to the next block if there is any. |
|
|
c %---------------------------------------------------------%
|
|
c
|
|
istart = iend + 1
|
|
if (iend .lt. kplusp) go to 20
|
|
c
|
|
c %---------------------------------------------%
|
|
c | Loop back to the top to get the next shift. |
|
|
c %---------------------------------------------%
|
|
c
|
|
110 continue
|
|
c
|
|
c %--------------------------------------------------%
|
|
c | Perform a similarity transformation that makes |
|
|
c | sure that H will have non negative sub diagonals |
|
|
c %--------------------------------------------------%
|
|
c
|
|
do 120 j=1,kev
|
|
if ( h(j+1,j) .lt. zero ) then
|
|
call sscal( kplusp-j+1, -one, h(j+1,j), ldh )
|
|
call sscal( min(j+2, kplusp), -one, h(1,j+1), 1 )
|
|
call sscal( min(j+np+1,kplusp), -one, q(1,j+1), 1 )
|
|
end if
|
|
120 continue
|
|
c
|
|
do 130 i = 1, kev
|
|
c
|
|
c %--------------------------------------------%
|
|
c | Final check for splitting and deflation. |
|
|
c | Use a standard test as in the QR algorithm |
|
|
c | REFERENCE: LAPACK subroutine slahqr |
|
|
c %--------------------------------------------%
|
|
c
|
|
tst1 = abs( h( i, i ) ) + abs( h( i+1, i+1 ) )
|
|
if( tst1.eq.zero )
|
|
& tst1 = slanhs( '1', kev, h, ldh, workl )
|
|
if( h( i+1,i ) .le. max( ulp*tst1, smlnum ) )
|
|
& h(i+1,i) = zero
|
|
130 continue
|
|
c
|
|
c %-------------------------------------------------%
|
|
c | Compute the (kev+1)-st column of (V*Q) and |
|
|
c | temporarily store the result in WORKD(N+1:2*N). |
|
|
c | This is needed in the residual update since we |
|
|
c | cannot GUARANTEE that the corresponding entry |
|
|
c | of H would be zero as in exact arithmetic. |
|
|
c %-------------------------------------------------%
|
|
c
|
|
if (h(kev+1,kev) .gt. zero)
|
|
& call sgemv ('N', n, kplusp, one, v, ldv, q(1,kev+1), 1, zero,
|
|
& workd(n+1), 1)
|
|
c
|
|
c %----------------------------------------------------------%
|
|
c | Compute column 1 to kev of (V*Q) in backward order |
|
|
c | taking advantage of the upper Hessenberg structure of Q. |
|
|
c %----------------------------------------------------------%
|
|
c
|
|
do 140 i = 1, kev
|
|
call sgemv ('N', n, kplusp-i+1, one, v, ldv,
|
|
& q(1,kev-i+1), 1, zero, workd, 1)
|
|
call scopy (n, workd, 1, v(1,kplusp-i+1), 1)
|
|
140 continue
|
|
c
|
|
c %-------------------------------------------------%
|
|
c | Move v(:,kplusp-kev+1:kplusp) into v(:,1:kev). |
|
|
c %-------------------------------------------------%
|
|
c
|
|
call slacpy ('A', n, kev, v(1,kplusp-kev+1), ldv, v, ldv)
|
|
c
|
|
c %--------------------------------------------------------------%
|
|
c | Copy the (kev+1)-st column of (V*Q) in the appropriate place |
|
|
c %--------------------------------------------------------------%
|
|
c
|
|
if (h(kev+1,kev) .gt. zero)
|
|
& call scopy (n, workd(n+1), 1, v(1,kev+1), 1)
|
|
c
|
|
c %-------------------------------------%
|
|
c | Update the residual vector: |
|
|
c | r <- sigmak*r + betak*v(:,kev+1) |
|
|
c | where |
|
|
c | sigmak = (e_{kplusp}'*Q)*e_{kev} |
|
|
c | betak = e_{kev+1}'*H*e_{kev} |
|
|
c %-------------------------------------%
|
|
c
|
|
call sscal (n, q(kplusp,kev), resid, 1)
|
|
if (h(kev+1,kev) .gt. zero)
|
|
& call saxpy (n, h(kev+1,kev), v(1,kev+1), 1, resid, 1)
|
|
c
|
|
if (msglvl .gt. 1) then
|
|
call svout (logfil, 1, q(kplusp,kev), ndigit,
|
|
& '_napps: sigmak = (e_{kev+p}^T*Q)*e_{kev}')
|
|
call svout (logfil, 1, h(kev+1,kev), ndigit,
|
|
& '_napps: betak = e_{kev+1}^T*H*e_{kev}')
|
|
call ivout (logfil, 1, kev, ndigit,
|
|
& '_napps: Order of the final Hessenberg matrix ')
|
|
if (msglvl .gt. 2) then
|
|
call smout (logfil, kev, kev, h, ldh, ndigit,
|
|
& '_napps: updated Hessenberg matrix H for next iteration')
|
|
end if
|
|
c
|
|
end if
|
|
c
|
|
9000 continue
|
|
call second (t1)
|
|
tnapps = tnapps + (t1 - t0)
|
|
c
|
|
return
|
|
c
|
|
c %---------------%
|
|
c | End of snapps |
|
|
c %---------------%
|
|
c
|
|
end
|