219 lines
5.2 KiB
Fortran
219 lines
5.2 KiB
Fortran
c-----------------------------------------------------------------------
|
|
c\BeginDoc
|
|
c
|
|
c\Name: dsortr
|
|
c
|
|
c\Description:
|
|
c Sort the array X1 in the order specified by WHICH and optionally
|
|
c applies the permutation to the array X2.
|
|
c
|
|
c\Usage:
|
|
c call dsortr
|
|
c ( WHICH, APPLY, N, X1, X2 )
|
|
c
|
|
c\Arguments
|
|
c WHICH Character*2. (Input)
|
|
c 'LM' -> X1 is sorted into increasing order of magnitude.
|
|
c 'SM' -> X1 is sorted into decreasing order of magnitude.
|
|
c 'LA' -> X1 is sorted into increasing order of algebraic.
|
|
c 'SA' -> X1 is sorted into decreasing order of algebraic.
|
|
c
|
|
c APPLY Logical. (Input)
|
|
c APPLY = .TRUE. -> apply the sorted order to X2.
|
|
c APPLY = .FALSE. -> do not apply the sorted order to X2.
|
|
c
|
|
c N Integer. (INPUT)
|
|
c Size of the arrays.
|
|
c
|
|
c X1 Double precision array of length N. (INPUT/OUTPUT)
|
|
c The array to be sorted.
|
|
c
|
|
c X2 Double precision array of length N. (INPUT/OUTPUT)
|
|
c Only referenced if APPLY = .TRUE.
|
|
c
|
|
c\EndDoc
|
|
c
|
|
c-----------------------------------------------------------------------
|
|
c
|
|
c\BeginLib
|
|
c
|
|
c\Author
|
|
c Danny Sorensen Phuong Vu
|
|
c Richard Lehoucq CRPC / Rice University
|
|
c Dept. of Computational & Houston, Texas
|
|
c Applied Mathematics
|
|
c Rice University
|
|
c Houston, Texas
|
|
c
|
|
c\Revision history:
|
|
c 12/16/93: Version ' 2.1'.
|
|
c Adapted from the sort routine in LANSO.
|
|
c
|
|
c\SCCS Information: @(#)
|
|
c FILE: sortr.F SID: 2.3 DATE OF SID: 4/19/96 RELEASE: 2
|
|
c
|
|
c\EndLib
|
|
c
|
|
c-----------------------------------------------------------------------
|
|
c
|
|
subroutine dsortr (which, apply, n, x1, x2)
|
|
c
|
|
c %------------------%
|
|
c | Scalar Arguments |
|
|
c %------------------%
|
|
c
|
|
character*2 which
|
|
logical apply
|
|
integer n
|
|
c
|
|
c %-----------------%
|
|
c | Array Arguments |
|
|
c %-----------------%
|
|
c
|
|
Double precision
|
|
& x1(0:n-1), x2(0:n-1)
|
|
c
|
|
c %---------------%
|
|
c | Local Scalars |
|
|
c %---------------%
|
|
c
|
|
integer i, igap, j
|
|
Double precision
|
|
& temp
|
|
c
|
|
c %-----------------------%
|
|
c | Executable Statements |
|
|
c %-----------------------%
|
|
c
|
|
igap = n / 2
|
|
c
|
|
if (which .eq. 'SA') then
|
|
c
|
|
c X1 is sorted into decreasing order of algebraic.
|
|
c
|
|
10 continue
|
|
if (igap .eq. 0) go to 9000
|
|
do 30 i = igap, n-1
|
|
j = i-igap
|
|
20 continue
|
|
c
|
|
if (j.lt.0) go to 30
|
|
c
|
|
if (x1(j).lt.x1(j+igap)) then
|
|
temp = x1(j)
|
|
x1(j) = x1(j+igap)
|
|
x1(j+igap) = temp
|
|
if (apply) then
|
|
temp = x2(j)
|
|
x2(j) = x2(j+igap)
|
|
x2(j+igap) = temp
|
|
end if
|
|
else
|
|
go to 30
|
|
endif
|
|
j = j-igap
|
|
go to 20
|
|
30 continue
|
|
igap = igap / 2
|
|
go to 10
|
|
c
|
|
else if (which .eq. 'SM') then
|
|
c
|
|
c X1 is sorted into decreasing order of magnitude.
|
|
c
|
|
40 continue
|
|
if (igap .eq. 0) go to 9000
|
|
do 60 i = igap, n-1
|
|
j = i-igap
|
|
50 continue
|
|
c
|
|
if (j.lt.0) go to 60
|
|
c
|
|
if (abs(x1(j)).lt.abs(x1(j+igap))) then
|
|
temp = x1(j)
|
|
x1(j) = x1(j+igap)
|
|
x1(j+igap) = temp
|
|
if (apply) then
|
|
temp = x2(j)
|
|
x2(j) = x2(j+igap)
|
|
x2(j+igap) = temp
|
|
end if
|
|
else
|
|
go to 60
|
|
endif
|
|
j = j-igap
|
|
go to 50
|
|
60 continue
|
|
igap = igap / 2
|
|
go to 40
|
|
c
|
|
else if (which .eq. 'LA') then
|
|
c
|
|
c X1 is sorted into increasing order of algebraic.
|
|
c
|
|
70 continue
|
|
if (igap .eq. 0) go to 9000
|
|
do 90 i = igap, n-1
|
|
j = i-igap
|
|
80 continue
|
|
c
|
|
if (j.lt.0) go to 90
|
|
c
|
|
if (x1(j).gt.x1(j+igap)) then
|
|
temp = x1(j)
|
|
x1(j) = x1(j+igap)
|
|
x1(j+igap) = temp
|
|
if (apply) then
|
|
temp = x2(j)
|
|
x2(j) = x2(j+igap)
|
|
x2(j+igap) = temp
|
|
end if
|
|
else
|
|
go to 90
|
|
endif
|
|
j = j-igap
|
|
go to 80
|
|
90 continue
|
|
igap = igap / 2
|
|
go to 70
|
|
c
|
|
else if (which .eq. 'LM') then
|
|
c
|
|
c X1 is sorted into increasing order of magnitude.
|
|
c
|
|
100 continue
|
|
if (igap .eq. 0) go to 9000
|
|
do 120 i = igap, n-1
|
|
j = i-igap
|
|
110 continue
|
|
c
|
|
if (j.lt.0) go to 120
|
|
c
|
|
if (abs(x1(j)).gt.abs(x1(j+igap))) then
|
|
temp = x1(j)
|
|
x1(j) = x1(j+igap)
|
|
x1(j+igap) = temp
|
|
if (apply) then
|
|
temp = x2(j)
|
|
x2(j) = x2(j+igap)
|
|
x2(j+igap) = temp
|
|
end if
|
|
else
|
|
go to 120
|
|
endif
|
|
j = j-igap
|
|
go to 110
|
|
120 continue
|
|
igap = igap / 2
|
|
go to 100
|
|
end if
|
|
c
|
|
9000 continue
|
|
return
|
|
c
|
|
c %---------------%
|
|
c | End of dsortr |
|
|
c %---------------%
|
|
c
|
|
end
|