851 lines
32 KiB
Fortran
851 lines
32 KiB
Fortran
c-----------------------------------------------------------------------
|
|
c\BeginDoc
|
|
c
|
|
c\Name: dsaup2
|
|
c
|
|
c\Description:
|
|
c Intermediate level interface called by dsaupd.
|
|
c
|
|
c\Usage:
|
|
c call dsaup2
|
|
c ( IDO, BMAT, N, WHICH, NEV, NP, TOL, RESID, MODE, IUPD,
|
|
c ISHIFT, MXITER, V, LDV, H, LDH, RITZ, BOUNDS, Q, LDQ, WORKL,
|
|
c IPNTR, WORKD, INFO )
|
|
c
|
|
c\Arguments
|
|
c
|
|
c IDO, BMAT, N, WHICH, NEV, TOL, RESID: same as defined in dsaupd.
|
|
c MODE, ISHIFT, MXITER: see the definition of IPARAM in dsaupd.
|
|
c
|
|
c NP Integer. (INPUT/OUTPUT)
|
|
c Contains the number of implicit shifts to apply during
|
|
c each Arnoldi/Lanczos iteration.
|
|
c If ISHIFT=1, NP is adjusted dynamically at each iteration
|
|
c to accelerate convergence and prevent stagnation.
|
|
c This is also roughly equal to the number of matrix-vector
|
|
c products (involving the operator OP) per Arnoldi iteration.
|
|
c The logic for adjusting is contained within the current
|
|
c subroutine.
|
|
c If ISHIFT=0, NP is the number of shifts the user needs
|
|
c to provide via reverse comunication. 0 < NP < NCV-NEV.
|
|
c NP may be less than NCV-NEV since a leading block of the current
|
|
c upper Tridiagonal matrix has split off and contains "unwanted"
|
|
c Ritz values.
|
|
c Upon termination of the IRA iteration, NP contains the number
|
|
c of "converged" wanted Ritz values.
|
|
c
|
|
c IUPD Integer. (INPUT)
|
|
c IUPD .EQ. 0: use explicit restart instead implicit update.
|
|
c IUPD .NE. 0: use implicit update.
|
|
c
|
|
c V Double precision N by (NEV+NP) array. (INPUT/OUTPUT)
|
|
c The Lanczos basis vectors.
|
|
c
|
|
c LDV Integer. (INPUT)
|
|
c Leading dimension of V exactly as declared in the calling
|
|
c program.
|
|
c
|
|
c H Double precision (NEV+NP) by 2 array. (OUTPUT)
|
|
c H is used to store the generated symmetric tridiagonal matrix
|
|
c The subdiagonal is stored in the first column of H starting
|
|
c at H(2,1). The main diagonal is stored in the second column
|
|
c of H starting at H(1,2). If dsaup2 converges store the
|
|
c B-norm of the final residual vector in H(1,1).
|
|
c
|
|
c LDH Integer. (INPUT)
|
|
c Leading dimension of H exactly as declared in the calling
|
|
c program.
|
|
c
|
|
c RITZ Double precision array of length NEV+NP. (OUTPUT)
|
|
c RITZ(1:NEV) contains the computed Ritz values of OP.
|
|
c
|
|
c BOUNDS Double precision array of length NEV+NP. (OUTPUT)
|
|
c BOUNDS(1:NEV) contain the error bounds corresponding to RITZ.
|
|
c
|
|
c Q Double precision (NEV+NP) by (NEV+NP) array. (WORKSPACE)
|
|
c Private (replicated) work array used to accumulate the
|
|
c rotation in the shift application step.
|
|
c
|
|
c LDQ Integer. (INPUT)
|
|
c Leading dimension of Q exactly as declared in the calling
|
|
c program.
|
|
c
|
|
c WORKL Double precision array of length at least 3*(NEV+NP). (INPUT/WORKSPACE)
|
|
c Private (replicated) array on each PE or array allocated on
|
|
c the front end. It is used in the computation of the
|
|
c tridiagonal eigenvalue problem, the calculation and
|
|
c application of the shifts and convergence checking.
|
|
c If ISHIFT .EQ. O and IDO .EQ. 3, the first NP locations
|
|
c of WORKL are used in reverse communication to hold the user
|
|
c supplied shifts.
|
|
c
|
|
c IPNTR Integer array of length 3. (OUTPUT)
|
|
c Pointer to mark the starting locations in the WORKD for
|
|
c vectors used by the Lanczos iteration.
|
|
c -------------------------------------------------------------
|
|
c IPNTR(1): pointer to the current operand vector X.
|
|
c IPNTR(2): pointer to the current result vector Y.
|
|
c IPNTR(3): pointer to the vector B * X when used in one of
|
|
c the spectral transformation modes. X is the current
|
|
c operand.
|
|
c -------------------------------------------------------------
|
|
c
|
|
c WORKD Double precision work array of length 3*N. (REVERSE COMMUNICATION)
|
|
c Distributed array to be used in the basic Lanczos iteration
|
|
c for reverse communication. The user should not use WORKD
|
|
c as temporary workspace during the iteration !!!!!!!!!!
|
|
c See Data Distribution Note in dsaupd.
|
|
c
|
|
c INFO Integer. (INPUT/OUTPUT)
|
|
c If INFO .EQ. 0, a randomly initial residual vector is used.
|
|
c If INFO .NE. 0, RESID contains the initial residual vector,
|
|
c possibly from a previous run.
|
|
c Error flag on output.
|
|
c = 0: Normal return.
|
|
c = 1: All possible eigenvalues of OP has been found.
|
|
c NP returns the size of the invariant subspace
|
|
c spanning the operator OP.
|
|
c = 2: No shifts could be applied.
|
|
c = -8: Error return from trid. eigenvalue calculation;
|
|
c This should never happen.
|
|
c = -9: Starting vector is zero.
|
|
c = -9999: Could not build an Lanczos factorization.
|
|
c Size that was built in returned in NP.
|
|
c
|
|
c\EndDoc
|
|
c
|
|
c-----------------------------------------------------------------------
|
|
c
|
|
c\BeginLib
|
|
c
|
|
c\References:
|
|
c 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
|
|
c a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
|
|
c pp 357-385.
|
|
c 2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly
|
|
c Restarted Arnoldi Iteration", Rice University Technical Report
|
|
c TR95-13, Department of Computational and Applied Mathematics.
|
|
c 3. B.N. Parlett, "The Symmetric Eigenvalue Problem". Prentice-Hall,
|
|
c 1980.
|
|
c 4. B.N. Parlett, B. Nour-Omid, "Towards a Black Box Lanczos Program",
|
|
c Computer Physics Communications, 53 (1989), pp 169-179.
|
|
c 5. B. Nour-Omid, B.N. Parlett, T. Ericson, P.S. Jensen, "How to
|
|
c Implement the Spectral Transformation", Math. Comp., 48 (1987),
|
|
c pp 663-673.
|
|
c 6. R.G. Grimes, J.G. Lewis and H.D. Simon, "A Shifted Block Lanczos
|
|
c Algorithm for Solving Sparse Symmetric Generalized Eigenproblems",
|
|
c SIAM J. Matr. Anal. Apps., January (1993).
|
|
c 7. L. Reichel, W.B. Gragg, "Algorithm 686: FORTRAN Subroutines
|
|
c for Updating the QR decomposition", ACM TOMS, December 1990,
|
|
c Volume 16 Number 4, pp 369-377.
|
|
c
|
|
c\Routines called:
|
|
c dgetv0 ARPACK initial vector generation routine.
|
|
c dsaitr ARPACK Lanczos factorization routine.
|
|
c dsapps ARPACK application of implicit shifts routine.
|
|
c dsconv ARPACK convergence of Ritz values routine.
|
|
c dseigt ARPACK compute Ritz values and error bounds routine.
|
|
c dsgets ARPACK reorder Ritz values and error bounds routine.
|
|
c dsortr ARPACK sorting routine.
|
|
c ivout ARPACK utility routine that prints integers.
|
|
c second ARPACK utility routine for timing.
|
|
c dvout ARPACK utility routine that prints vectors.
|
|
c dlamch LAPACK routine that determines machine constants.
|
|
c dcopy Level 1 BLAS that copies one vector to another.
|
|
c ddot Level 1 BLAS that computes the scalar product of two vectors.
|
|
c dnrm2 Level 1 BLAS that computes the norm of a vector.
|
|
c dscal Level 1 BLAS that scales a vector.
|
|
c dswap Level 1 BLAS that swaps two vectors.
|
|
c
|
|
c\Author
|
|
c Danny Sorensen Phuong Vu
|
|
c Richard Lehoucq CRPC / Rice University
|
|
c Dept. of Computational & Houston, Texas
|
|
c Applied Mathematics
|
|
c Rice University
|
|
c Houston, Texas
|
|
c
|
|
c\Revision history:
|
|
c 12/15/93: Version ' 2.4'
|
|
c xx/xx/95: Version ' 2.4'. (R.B. Lehoucq)
|
|
c
|
|
c\SCCS Information: @(#)
|
|
c FILE: saup2.F SID: 2.7 DATE OF SID: 5/19/98 RELEASE: 2
|
|
c
|
|
c\EndLib
|
|
c
|
|
c-----------------------------------------------------------------------
|
|
c
|
|
subroutine dsaup2
|
|
& ( ido, bmat, n, which, nev, np, tol, resid, mode, iupd,
|
|
& ishift, mxiter, v, ldv, h, ldh, ritz, bounds,
|
|
& q, ldq, workl, ipntr, workd, info )
|
|
c
|
|
c %----------------------------------------------------%
|
|
c | Include files for debugging and timing information |
|
|
c %----------------------------------------------------%
|
|
c
|
|
include 'debug.h'
|
|
include 'stat.h'
|
|
c
|
|
c %------------------%
|
|
c | Scalar Arguments |
|
|
c %------------------%
|
|
c
|
|
character bmat*1, which*2
|
|
integer ido, info, ishift, iupd, ldh, ldq, ldv, mxiter,
|
|
& n, mode, nev, np
|
|
Double precision
|
|
& tol
|
|
c
|
|
c %-----------------%
|
|
c | Array Arguments |
|
|
c %-----------------%
|
|
c
|
|
integer ipntr(3)
|
|
Double precision
|
|
& bounds(nev+np), h(ldh,2), q(ldq,nev+np), resid(n),
|
|
& ritz(nev+np), v(ldv,nev+np), workd(3*n),
|
|
& workl(3*(nev+np))
|
|
c
|
|
c %------------%
|
|
c | Parameters |
|
|
c %------------%
|
|
c
|
|
Double precision
|
|
& one, zero
|
|
parameter (one = 1.0D+0, zero = 0.0D+0)
|
|
c
|
|
c %---------------%
|
|
c | Local Scalars |
|
|
c %---------------%
|
|
c
|
|
character wprime*2
|
|
logical cnorm, getv0, initv, update, ushift
|
|
integer ierr, iter, j, kplusp, msglvl, nconv, nevbef, nev0,
|
|
& np0, nptemp, nevd2, nevm2, kp(3)
|
|
Double precision
|
|
& rnorm, temp, eps23
|
|
save cnorm, getv0, initv, update, ushift,
|
|
& iter, kplusp, msglvl, nconv, nev0, np0,
|
|
& rnorm, eps23
|
|
c
|
|
c %----------------------%
|
|
c | External Subroutines |
|
|
c %----------------------%
|
|
c
|
|
external dcopy, dgetv0, dsaitr, dscal, dsconv, dseigt, dsgets,
|
|
& dsapps, dsortr, dvout, ivout, second, dswap
|
|
c
|
|
c %--------------------%
|
|
c | External Functions |
|
|
c %--------------------%
|
|
c
|
|
Double precision
|
|
& ddot, dnrm2, dlamch
|
|
external ddot, dnrm2, dlamch
|
|
c
|
|
c %---------------------%
|
|
c | Intrinsic Functions |
|
|
c %---------------------%
|
|
c
|
|
intrinsic min
|
|
c
|
|
c %-----------------------%
|
|
c | Executable Statements |
|
|
c %-----------------------%
|
|
c
|
|
if (ido .eq. 0) then
|
|
c
|
|
c %-------------------------------%
|
|
c | Initialize timing statistics |
|
|
c | & message level for debugging |
|
|
c %-------------------------------%
|
|
c
|
|
call second (t0)
|
|
msglvl = msaup2
|
|
c
|
|
c %---------------------------------%
|
|
c | Set machine dependent constant. |
|
|
c %---------------------------------%
|
|
c
|
|
eps23 = dlamch('Epsilon-Machine')
|
|
eps23 = eps23**(2.0D+0/3.0D+0)
|
|
c
|
|
c %-------------------------------------%
|
|
c | nev0 and np0 are integer variables |
|
|
c | hold the initial values of NEV & NP |
|
|
c %-------------------------------------%
|
|
c
|
|
nev0 = nev
|
|
np0 = np
|
|
c
|
|
c %-------------------------------------%
|
|
c | kplusp is the bound on the largest |
|
|
c | Lanczos factorization built. |
|
|
c | nconv is the current number of |
|
|
c | "converged" eigenvlues. |
|
|
c | iter is the counter on the current |
|
|
c | iteration step. |
|
|
c %-------------------------------------%
|
|
c
|
|
kplusp = nev0 + np0
|
|
nconv = 0
|
|
iter = 0
|
|
c
|
|
c %--------------------------------------------%
|
|
c | Set flags for computing the first NEV steps |
|
|
c | of the Lanczos factorization. |
|
|
c %--------------------------------------------%
|
|
c
|
|
getv0 = .true.
|
|
update = .false.
|
|
ushift = .false.
|
|
cnorm = .false.
|
|
c
|
|
if (info .ne. 0) then
|
|
c
|
|
c %--------------------------------------------%
|
|
c | User provides the initial residual vector. |
|
|
c %--------------------------------------------%
|
|
c
|
|
initv = .true.
|
|
info = 0
|
|
else
|
|
initv = .false.
|
|
end if
|
|
end if
|
|
c
|
|
c %---------------------------------------------%
|
|
c | Get a possibly random starting vector and |
|
|
c | force it into the range of the operator OP. |
|
|
c %---------------------------------------------%
|
|
c
|
|
10 continue
|
|
c
|
|
if (getv0) then
|
|
call dgetv0 (ido, bmat, 1, initv, n, 1, v, ldv, resid, rnorm,
|
|
& ipntr, workd, info)
|
|
c
|
|
if (ido .ne. 99) go to 9000
|
|
c
|
|
if (rnorm .eq. zero) then
|
|
c
|
|
c %-----------------------------------------%
|
|
c | The initial vector is zero. Error exit. |
|
|
c %-----------------------------------------%
|
|
c
|
|
info = -9
|
|
go to 1200
|
|
end if
|
|
getv0 = .false.
|
|
ido = 0
|
|
end if
|
|
c
|
|
c %------------------------------------------------------------%
|
|
c | Back from reverse communication: continue with update step |
|
|
c %------------------------------------------------------------%
|
|
c
|
|
if (update) go to 20
|
|
c
|
|
c %-------------------------------------------%
|
|
c | Back from computing user specified shifts |
|
|
c %-------------------------------------------%
|
|
c
|
|
if (ushift) go to 50
|
|
c
|
|
c %-------------------------------------%
|
|
c | Back from computing residual norm |
|
|
c | at the end of the current iteration |
|
|
c %-------------------------------------%
|
|
c
|
|
if (cnorm) go to 100
|
|
c
|
|
c %----------------------------------------------------------%
|
|
c | Compute the first NEV steps of the Lanczos factorization |
|
|
c %----------------------------------------------------------%
|
|
c
|
|
call dsaitr (ido, bmat, n, 0, nev0, mode, resid, rnorm, v, ldv,
|
|
& h, ldh, ipntr, workd, info)
|
|
c
|
|
c %---------------------------------------------------%
|
|
c | ido .ne. 99 implies use of reverse communication |
|
|
c | to compute operations involving OP and possibly B |
|
|
c %---------------------------------------------------%
|
|
c
|
|
if (ido .ne. 99) go to 9000
|
|
c
|
|
if (info .gt. 0) then
|
|
c
|
|
c %-----------------------------------------------------%
|
|
c | dsaitr was unable to build an Lanczos factorization |
|
|
c | of length NEV0. INFO is returned with the size of |
|
|
c | the factorization built. Exit main loop. |
|
|
c %-----------------------------------------------------%
|
|
c
|
|
np = info
|
|
mxiter = iter
|
|
info = -9999
|
|
go to 1200
|
|
end if
|
|
c
|
|
c %--------------------------------------------------------------%
|
|
c | |
|
|
c | M A I N LANCZOS I T E R A T I O N L O O P |
|
|
c | Each iteration implicitly restarts the Lanczos |
|
|
c | factorization in place. |
|
|
c | |
|
|
c %--------------------------------------------------------------%
|
|
c
|
|
1000 continue
|
|
c
|
|
iter = iter + 1
|
|
c
|
|
if (msglvl .gt. 0) then
|
|
call ivout (logfil, 1, iter, ndigit,
|
|
& '_saup2: **** Start of major iteration number ****')
|
|
end if
|
|
if (msglvl .gt. 1) then
|
|
call ivout (logfil, 1, nev, ndigit,
|
|
& '_saup2: The length of the current Lanczos factorization')
|
|
call ivout (logfil, 1, np, ndigit,
|
|
& '_saup2: Extend the Lanczos factorization by')
|
|
end if
|
|
c
|
|
c %------------------------------------------------------------%
|
|
c | Compute NP additional steps of the Lanczos factorization. |
|
|
c %------------------------------------------------------------%
|
|
c
|
|
ido = 0
|
|
20 continue
|
|
update = .true.
|
|
c
|
|
call dsaitr (ido, bmat, n, nev, np, mode, resid, rnorm, v,
|
|
& ldv, h, ldh, ipntr, workd, info)
|
|
c
|
|
c %---------------------------------------------------%
|
|
c | ido .ne. 99 implies use of reverse communication |
|
|
c | to compute operations involving OP and possibly B |
|
|
c %---------------------------------------------------%
|
|
c
|
|
if (ido .ne. 99) go to 9000
|
|
c
|
|
if (info .gt. 0) then
|
|
c
|
|
c %-----------------------------------------------------%
|
|
c | dsaitr was unable to build an Lanczos factorization |
|
|
c | of length NEV0+NP0. INFO is returned with the size |
|
|
c | of the factorization built. Exit main loop. |
|
|
c %-----------------------------------------------------%
|
|
c
|
|
np = info
|
|
mxiter = iter
|
|
info = -9999
|
|
go to 1200
|
|
end if
|
|
update = .false.
|
|
c
|
|
if (msglvl .gt. 1) then
|
|
call dvout (logfil, 1, rnorm, ndigit,
|
|
& '_saup2: Current B-norm of residual for factorization')
|
|
end if
|
|
c
|
|
c %--------------------------------------------------------%
|
|
c | Compute the eigenvalues and corresponding error bounds |
|
|
c | of the current symmetric tridiagonal matrix. |
|
|
c %--------------------------------------------------------%
|
|
c
|
|
call dseigt (rnorm, kplusp, h, ldh, ritz, bounds, workl, ierr)
|
|
c
|
|
if (ierr .ne. 0) then
|
|
info = -8
|
|
go to 1200
|
|
end if
|
|
c
|
|
c %----------------------------------------------------%
|
|
c | Make a copy of eigenvalues and corresponding error |
|
|
c | bounds obtained from _seigt. |
|
|
c %----------------------------------------------------%
|
|
c
|
|
call dcopy(kplusp, ritz, 1, workl(kplusp+1), 1)
|
|
call dcopy(kplusp, bounds, 1, workl(2*kplusp+1), 1)
|
|
c
|
|
c %---------------------------------------------------%
|
|
c | Select the wanted Ritz values and their bounds |
|
|
c | to be used in the convergence test. |
|
|
c | The selection is based on the requested number of |
|
|
c | eigenvalues instead of the current NEV and NP to |
|
|
c | prevent possible misconvergence. |
|
|
c | * Wanted Ritz values := RITZ(NP+1:NEV+NP) |
|
|
c | * Shifts := RITZ(1:NP) := WORKL(1:NP) |
|
|
c %---------------------------------------------------%
|
|
c
|
|
nev = nev0
|
|
np = np0
|
|
call dsgets (ishift, which, nev, np, ritz, bounds, workl)
|
|
c
|
|
c %-------------------%
|
|
c | Convergence test. |
|
|
c %-------------------%
|
|
c
|
|
call dcopy (nev, bounds(np+1), 1, workl(np+1), 1)
|
|
call dsconv (nev, ritz(np+1), workl(np+1), tol, nconv)
|
|
c
|
|
if (msglvl .gt. 2) then
|
|
kp(1) = nev
|
|
kp(2) = np
|
|
kp(3) = nconv
|
|
call ivout (logfil, 3, kp, ndigit,
|
|
& '_saup2: NEV, NP, NCONV are')
|
|
call dvout (logfil, kplusp, ritz, ndigit,
|
|
& '_saup2: The eigenvalues of H')
|
|
call dvout (logfil, kplusp, bounds, ndigit,
|
|
& '_saup2: Ritz estimates of the current NCV Ritz values')
|
|
end if
|
|
c
|
|
c %---------------------------------------------------------%
|
|
c | Count the number of unwanted Ritz values that have zero |
|
|
c | Ritz estimates. If any Ritz estimates are equal to zero |
|
|
c | then a leading block of H of order equal to at least |
|
|
c | the number of Ritz values with zero Ritz estimates has |
|
|
c | split off. None of these Ritz values may be removed by |
|
|
c | shifting. Decrease NP the number of shifts to apply. If |
|
|
c | no shifts may be applied, then prepare to exit |
|
|
c %---------------------------------------------------------%
|
|
c
|
|
nptemp = np
|
|
do 30 j=1, nptemp
|
|
if (bounds(j) .eq. zero) then
|
|
np = np - 1
|
|
nev = nev + 1
|
|
end if
|
|
30 continue
|
|
c
|
|
if ( (nconv .ge. nev0) .or.
|
|
& (iter .gt. mxiter) .or.
|
|
& (np .eq. 0) ) then
|
|
c
|
|
c %------------------------------------------------%
|
|
c | Prepare to exit. Put the converged Ritz values |
|
|
c | and corresponding bounds in RITZ(1:NCONV) and |
|
|
c | BOUNDS(1:NCONV) respectively. Then sort. Be |
|
|
c | careful when NCONV > NP since we don't want to |
|
|
c | swap overlapping locations. |
|
|
c %------------------------------------------------%
|
|
c
|
|
if (which .eq. 'BE') then
|
|
c
|
|
c %-----------------------------------------------------%
|
|
c | Both ends of the spectrum are requested. |
|
|
c | Sort the eigenvalues into algebraically decreasing |
|
|
c | order first then swap low end of the spectrum next |
|
|
c | to high end in appropriate locations. |
|
|
c | NOTE: when np < floor(nev/2) be careful not to swap |
|
|
c | overlapping locations. |
|
|
c %-----------------------------------------------------%
|
|
c
|
|
wprime = 'SA'
|
|
call dsortr (wprime, .true., kplusp, ritz, bounds)
|
|
nevd2 = nev0 / 2
|
|
nevm2 = nev0 - nevd2
|
|
if ( nev .gt. 1 ) then
|
|
call dswap ( min(nevd2,np), ritz(nevm2+1), 1,
|
|
& ritz( max(kplusp-nevd2+1,kplusp-np+1) ), 1)
|
|
call dswap ( min(nevd2,np), bounds(nevm2+1), 1,
|
|
& bounds( max(kplusp-nevd2+1,kplusp-np+1)), 1)
|
|
end if
|
|
c
|
|
else
|
|
c
|
|
c %--------------------------------------------------%
|
|
c | LM, SM, LA, SA case. |
|
|
c | Sort the eigenvalues of H into the an order that |
|
|
c | is opposite to WHICH, and apply the resulting |
|
|
c | order to BOUNDS. The eigenvalues are sorted so |
|
|
c | that the wanted part are always within the first |
|
|
c | NEV locations. |
|
|
c %--------------------------------------------------%
|
|
c
|
|
if (which .eq. 'LM') wprime = 'SM'
|
|
if (which .eq. 'SM') wprime = 'LM'
|
|
if (which .eq. 'LA') wprime = 'SA'
|
|
if (which .eq. 'SA') wprime = 'LA'
|
|
c
|
|
call dsortr (wprime, .true., kplusp, ritz, bounds)
|
|
c
|
|
end if
|
|
c
|
|
c %--------------------------------------------------%
|
|
c | Scale the Ritz estimate of each Ritz value |
|
|
c | by 1 / max(eps23,magnitude of the Ritz value). |
|
|
c %--------------------------------------------------%
|
|
c
|
|
do 35 j = 1, nev0
|
|
temp = max( eps23, abs(ritz(j)) )
|
|
bounds(j) = bounds(j)/temp
|
|
35 continue
|
|
c
|
|
c %----------------------------------------------------%
|
|
c | Sort the Ritz values according to the scaled Ritz |
|
|
c | esitmates. This will push all the converged ones |
|
|
c | towards the front of ritzr, ritzi, bounds |
|
|
c | (in the case when NCONV < NEV.) |
|
|
c %----------------------------------------------------%
|
|
c
|
|
wprime = 'LA'
|
|
call dsortr(wprime, .true., nev0, bounds, ritz)
|
|
c
|
|
c %----------------------------------------------%
|
|
c | Scale the Ritz estimate back to its original |
|
|
c | value. |
|
|
c %----------------------------------------------%
|
|
c
|
|
do 40 j = 1, nev0
|
|
temp = max( eps23, abs(ritz(j)) )
|
|
bounds(j) = bounds(j)*temp
|
|
40 continue
|
|
c
|
|
c %--------------------------------------------------%
|
|
c | Sort the "converged" Ritz values again so that |
|
|
c | the "threshold" values and their associated Ritz |
|
|
c | estimates appear at the appropriate position in |
|
|
c | ritz and bound. |
|
|
c %--------------------------------------------------%
|
|
c
|
|
if (which .eq. 'BE') then
|
|
c
|
|
c %------------------------------------------------%
|
|
c | Sort the "converged" Ritz values in increasing |
|
|
c | order. The "threshold" values are in the |
|
|
c | middle. |
|
|
c %------------------------------------------------%
|
|
c
|
|
wprime = 'LA'
|
|
call dsortr(wprime, .true., nconv, ritz, bounds)
|
|
c
|
|
else
|
|
c
|
|
c %----------------------------------------------%
|
|
c | In LM, SM, LA, SA case, sort the "converged" |
|
|
c | Ritz values according to WHICH so that the |
|
|
c | "threshold" value appears at the front of |
|
|
c | ritz. |
|
|
c %----------------------------------------------%
|
|
|
|
call dsortr(which, .true., nconv, ritz, bounds)
|
|
c
|
|
end if
|
|
c
|
|
c %------------------------------------------%
|
|
c | Use h( 1,1 ) as storage to communicate |
|
|
c | rnorm to _seupd if needed |
|
|
c %------------------------------------------%
|
|
c
|
|
h(1,1) = rnorm
|
|
c
|
|
if (msglvl .gt. 1) then
|
|
call dvout (logfil, kplusp, ritz, ndigit,
|
|
& '_saup2: Sorted Ritz values.')
|
|
call dvout (logfil, kplusp, bounds, ndigit,
|
|
& '_saup2: Sorted ritz estimates.')
|
|
end if
|
|
c
|
|
c %------------------------------------%
|
|
c | Max iterations have been exceeded. |
|
|
c %------------------------------------%
|
|
c
|
|
if (iter .gt. mxiter .and. nconv .lt. nev) info = 1
|
|
c
|
|
c %---------------------%
|
|
c | No shifts to apply. |
|
|
c %---------------------%
|
|
c
|
|
if (np .eq. 0 .and. nconv .lt. nev0) info = 2
|
|
c
|
|
np = nconv
|
|
go to 1100
|
|
c
|
|
else if (nconv .lt. nev .and. ishift .eq. 1) then
|
|
c
|
|
c %---------------------------------------------------%
|
|
c | Do not have all the requested eigenvalues yet. |
|
|
c | To prevent possible stagnation, adjust the number |
|
|
c | of Ritz values and the shifts. |
|
|
c %---------------------------------------------------%
|
|
c
|
|
nevbef = nev
|
|
nev = nev + min (nconv, np/2)
|
|
if (nev .eq. 1 .and. kplusp .ge. 6) then
|
|
nev = kplusp / 2
|
|
else if (nev .eq. 1 .and. kplusp .gt. 2) then
|
|
nev = 2
|
|
end if
|
|
np = kplusp - nev
|
|
c
|
|
c %---------------------------------------%
|
|
c | If the size of NEV was just increased |
|
|
c | resort the eigenvalues. |
|
|
c %---------------------------------------%
|
|
c
|
|
if (nevbef .lt. nev)
|
|
& call dsgets (ishift, which, nev, np, ritz, bounds,
|
|
& workl)
|
|
c
|
|
end if
|
|
c
|
|
if (msglvl .gt. 0) then
|
|
call ivout (logfil, 1, nconv, ndigit,
|
|
& '_saup2: no. of "converged" Ritz values at this iter.')
|
|
if (msglvl .gt. 1) then
|
|
kp(1) = nev
|
|
kp(2) = np
|
|
call ivout (logfil, 2, kp, ndigit,
|
|
& '_saup2: NEV and NP are')
|
|
call dvout (logfil, nev, ritz(np+1), ndigit,
|
|
& '_saup2: "wanted" Ritz values.')
|
|
call dvout (logfil, nev, bounds(np+1), ndigit,
|
|
& '_saup2: Ritz estimates of the "wanted" values ')
|
|
end if
|
|
end if
|
|
|
|
c
|
|
if (ishift .eq. 0) then
|
|
c
|
|
c %-----------------------------------------------------%
|
|
c | User specified shifts: reverse communication to |
|
|
c | compute the shifts. They are returned in the first |
|
|
c | NP locations of WORKL. |
|
|
c %-----------------------------------------------------%
|
|
c
|
|
ushift = .true.
|
|
ido = 3
|
|
go to 9000
|
|
end if
|
|
c
|
|
50 continue
|
|
c
|
|
c %------------------------------------%
|
|
c | Back from reverse communication; |
|
|
c | User specified shifts are returned |
|
|
c | in WORKL(1:*NP) |
|
|
c %------------------------------------%
|
|
c
|
|
ushift = .false.
|
|
c
|
|
c
|
|
c %---------------------------------------------------------%
|
|
c | Move the NP shifts to the first NP locations of RITZ to |
|
|
c | free up WORKL. This is for the non-exact shift case; |
|
|
c | in the exact shift case, dsgets already handles this. |
|
|
c %---------------------------------------------------------%
|
|
c
|
|
if (ishift .eq. 0) call dcopy (np, workl, 1, ritz, 1)
|
|
c
|
|
if (msglvl .gt. 2) then
|
|
call ivout (logfil, 1, np, ndigit,
|
|
& '_saup2: The number of shifts to apply ')
|
|
call dvout (logfil, np, workl, ndigit,
|
|
& '_saup2: shifts selected')
|
|
if (ishift .eq. 1) then
|
|
call dvout (logfil, np, bounds, ndigit,
|
|
& '_saup2: corresponding Ritz estimates')
|
|
end if
|
|
end if
|
|
c
|
|
c %---------------------------------------------------------%
|
|
c | Apply the NP0 implicit shifts by QR bulge chasing. |
|
|
c | Each shift is applied to the entire tridiagonal matrix. |
|
|
c | The first 2*N locations of WORKD are used as workspace. |
|
|
c | After dsapps is done, we have a Lanczos |
|
|
c | factorization of length NEV. |
|
|
c %---------------------------------------------------------%
|
|
c
|
|
call dsapps (n, nev, np, ritz, v, ldv, h, ldh, resid, q, ldq,
|
|
& workd)
|
|
c
|
|
c %---------------------------------------------%
|
|
c | Compute the B-norm of the updated residual. |
|
|
c | Keep B*RESID in WORKD(1:N) to be used in |
|
|
c | the first step of the next call to dsaitr. |
|
|
c %---------------------------------------------%
|
|
c
|
|
cnorm = .true.
|
|
call second (t2)
|
|
if (bmat .eq. 'G') then
|
|
nbx = nbx + 1
|
|
call dcopy (n, resid, 1, workd(n+1), 1)
|
|
ipntr(1) = n + 1
|
|
ipntr(2) = 1
|
|
ido = 2
|
|
c
|
|
c %----------------------------------%
|
|
c | Exit in order to compute B*RESID |
|
|
c %----------------------------------%
|
|
c
|
|
go to 9000
|
|
else if (bmat .eq. 'I') then
|
|
call dcopy (n, resid, 1, workd, 1)
|
|
end if
|
|
c
|
|
100 continue
|
|
c
|
|
c %----------------------------------%
|
|
c | Back from reverse communication; |
|
|
c | WORKD(1:N) := B*RESID |
|
|
c %----------------------------------%
|
|
c
|
|
if (bmat .eq. 'G') then
|
|
call second (t3)
|
|
tmvbx = tmvbx + (t3 - t2)
|
|
end if
|
|
c
|
|
if (bmat .eq. 'G') then
|
|
rnorm = ddot (n, resid, 1, workd, 1)
|
|
rnorm = sqrt(abs(rnorm))
|
|
else if (bmat .eq. 'I') then
|
|
rnorm = dnrm2(n, resid, 1)
|
|
end if
|
|
cnorm = .false.
|
|
130 continue
|
|
c
|
|
if (msglvl .gt. 2) then
|
|
call dvout (logfil, 1, rnorm, ndigit,
|
|
& '_saup2: B-norm of residual for NEV factorization')
|
|
call dvout (logfil, nev, h(1,2), ndigit,
|
|
& '_saup2: main diagonal of compressed H matrix')
|
|
call dvout (logfil, nev-1, h(2,1), ndigit,
|
|
& '_saup2: subdiagonal of compressed H matrix')
|
|
end if
|
|
c
|
|
go to 1000
|
|
c
|
|
c %---------------------------------------------------------------%
|
|
c | |
|
|
c | E N D O F M A I N I T E R A T I O N L O O P |
|
|
c | |
|
|
c %---------------------------------------------------------------%
|
|
c
|
|
1100 continue
|
|
c
|
|
mxiter = iter
|
|
nev = nconv
|
|
c
|
|
1200 continue
|
|
ido = 99
|
|
c
|
|
c %------------%
|
|
c | Error exit |
|
|
c %------------%
|
|
c
|
|
call second (t1)
|
|
tsaup2 = t1 - t0
|
|
c
|
|
9000 continue
|
|
return
|
|
c
|
|
c %---------------%
|
|
c | End of dsaup2 |
|
|
c %---------------%
|
|
c
|
|
end
|