Projects/pyblm
Projects
/
pyblm
Archived
5
0
Fork 0
This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
pyblm/arpack/ARPACK/SRC/dneigh.f

315 lines
10 KiB
Fortran

c-----------------------------------------------------------------------
c\BeginDoc
c
c\Name: dneigh
c
c\Description:
c Compute the eigenvalues of the current upper Hessenberg matrix
c and the corresponding Ritz estimates given the current residual norm.
c
c\Usage:
c call dneigh
c ( RNORM, N, H, LDH, RITZR, RITZI, BOUNDS, Q, LDQ, WORKL, IERR )
c
c\Arguments
c RNORM Double precision scalar. (INPUT)
c Residual norm corresponding to the current upper Hessenberg
c matrix H.
c
c N Integer. (INPUT)
c Size of the matrix H.
c
c H Double precision N by N array. (INPUT)
c H contains the current upper Hessenberg matrix.
c
c LDH Integer. (INPUT)
c Leading dimension of H exactly as declared in the calling
c program.
c
c RITZR, Double precision arrays of length N. (OUTPUT)
c RITZI On output, RITZR(1:N) (resp. RITZI(1:N)) contains the real
c (respectively imaginary) parts of the eigenvalues of H.
c
c BOUNDS Double precision array of length N. (OUTPUT)
c On output, BOUNDS contains the Ritz estimates associated with
c the eigenvalues RITZR and RITZI. This is equal to RNORM
c times the last components of the eigenvectors corresponding
c to the eigenvalues in RITZR and RITZI.
c
c Q Double precision N by N array. (WORKSPACE)
c Workspace needed to store the eigenvectors of H.
c
c LDQ Integer. (INPUT)
c Leading dimension of Q exactly as declared in the calling
c program.
c
c WORKL Double precision work array of length N**2 + 3*N. (WORKSPACE)
c Private (replicated) array on each PE or array allocated on
c the front end. This is needed to keep the full Schur form
c of H and also in the calculation of the eigenvectors of H.
c
c IERR Integer. (OUTPUT)
c Error exit flag from dlaqrb or dtrevc.
c
c\EndDoc
c
c-----------------------------------------------------------------------
c
c\BeginLib
c
c\Local variables:
c xxxxxx real
c
c\Routines called:
c dlaqrb ARPACK routine to compute the real Schur form of an
c upper Hessenberg matrix and last row of the Schur vectors.
c second ARPACK utility routine for timing.
c dmout ARPACK utility routine that prints matrices
c dvout ARPACK utility routine that prints vectors.
c dlacpy LAPACK matrix copy routine.
c dlapy2 LAPACK routine to compute sqrt(x**2+y**2) carefully.
c dtrevc LAPACK routine to compute the eigenvectors of a matrix
c in upper quasi-triangular form
c dgemv Level 2 BLAS routine for matrix vector multiplication.
c dcopy Level 1 BLAS that copies one vector to another .
c dnrm2 Level 1 BLAS that computes the norm of a vector.
c dscal Level 1 BLAS that scales a vector.
c
c
c\Author
c Danny Sorensen Phuong Vu
c Richard Lehoucq CRPC / Rice University
c Dept. of Computational & Houston, Texas
c Applied Mathematics
c Rice University
c Houston, Texas
c
c\Revision history:
c xx/xx/92: Version ' 2.1'
c
c\SCCS Information: @(#)
c FILE: neigh.F SID: 2.3 DATE OF SID: 4/20/96 RELEASE: 2
c
c\Remarks
c None
c
c\EndLib
c
c-----------------------------------------------------------------------
c
subroutine dneigh (rnorm, n, h, ldh, ritzr, ritzi, bounds,
& q, ldq, workl, ierr)
c
c %----------------------------------------------------%
c | Include files for debugging and timing information |
c %----------------------------------------------------%
c
include 'debug.h'
include 'stat.h'
c
c %------------------%
c | Scalar Arguments |
c %------------------%
c
integer ierr, n, ldh, ldq
Double precision
& rnorm
c
c %-----------------%
c | Array Arguments |
c %-----------------%
c
Double precision
& bounds(n), h(ldh,n), q(ldq,n), ritzi(n), ritzr(n),
& workl(n*(n+3))
c
c %------------%
c | Parameters |
c %------------%
c
Double precision
& one, zero
parameter (one = 1.0D+0, zero = 0.0D+0)
c
c %------------------------%
c | Local Scalars & Arrays |
c %------------------------%
c
logical select(1)
integer i, iconj, msglvl
Double precision
& temp, vl(1)
c
c %----------------------%
c | External Subroutines |
c %----------------------%
c
external dcopy, dlacpy, dlaqrb, dtrevc, dvout, second
c
c %--------------------%
c | External Functions |
c %--------------------%
c
Double precision
& dlapy2, dnrm2
external dlapy2, dnrm2
c
c %---------------------%
c | Intrinsic Functions |
c %---------------------%
c
intrinsic abs
c
c %-----------------------%
c | Executable Statements |
c %-----------------------%
c
c
c %-------------------------------%
c | Initialize timing statistics |
c | & message level for debugging |
c %-------------------------------%
c
call second (t0)
msglvl = mneigh
c
if (msglvl .gt. 2) then
call dmout (logfil, n, n, h, ldh, ndigit,
& '_neigh: Entering upper Hessenberg matrix H ')
end if
c
c %-----------------------------------------------------------%
c | 1. Compute the eigenvalues, the last components of the |
c | corresponding Schur vectors and the full Schur form T |
c | of the current upper Hessenberg matrix H. |
c | dlaqrb returns the full Schur form of H in WORKL(1:N**2) |
c | and the last components of the Schur vectors in BOUNDS. |
c %-----------------------------------------------------------%
c
call dlacpy ('All', n, n, h, ldh, workl, n)
call dlaqrb (.true., n, 1, n, workl, n, ritzr, ritzi, bounds,
& ierr)
if (ierr .ne. 0) go to 9000
c
if (msglvl .gt. 1) then
call dvout (logfil, n, bounds, ndigit,
& '_neigh: last row of the Schur matrix for H')
end if
c
c %-----------------------------------------------------------%
c | 2. Compute the eigenvectors of the full Schur form T and |
c | apply the last components of the Schur vectors to get |
c | the last components of the corresponding eigenvectors. |
c | Remember that if the i-th and (i+1)-st eigenvalues are |
c | complex conjugate pairs, then the real & imaginary part |
c | of the eigenvector components are split across adjacent |
c | columns of Q. |
c %-----------------------------------------------------------%
c
call dtrevc ('R', 'A', select, n, workl, n, vl, n, q, ldq,
& n, n, workl(n*n+1), ierr)
c
if (ierr .ne. 0) go to 9000
c
c %------------------------------------------------%
c | Scale the returning eigenvectors so that their |
c | euclidean norms are all one. LAPACK subroutine |
c | dtrevc returns each eigenvector normalized so |
c | that the element of largest magnitude has |
c | magnitude 1; here the magnitude of a complex |
c | number (x,y) is taken to be |x| + |y|. |
c %------------------------------------------------%
c
iconj = 0
do 10 i=1, n
if ( abs( ritzi(i) ) .le. zero ) then
c
c %----------------------%
c | Real eigenvalue case |
c %----------------------%
c
temp = dnrm2( n, q(1,i), 1 )
call dscal ( n, one / temp, q(1,i), 1 )
else
c
c %-------------------------------------------%
c | Complex conjugate pair case. Note that |
c | since the real and imaginary part of |
c | the eigenvector are stored in consecutive |
c | columns, we further normalize by the |
c | square root of two. |
c %-------------------------------------------%
c
if (iconj .eq. 0) then
temp = dlapy2( dnrm2( n, q(1,i), 1 ),
& dnrm2( n, q(1,i+1), 1 ) )
call dscal ( n, one / temp, q(1,i), 1 )
call dscal ( n, one / temp, q(1,i+1), 1 )
iconj = 1
else
iconj = 0
end if
end if
10 continue
c
call dgemv ('T', n, n, one, q, ldq, bounds, 1, zero, workl, 1)
c
if (msglvl .gt. 1) then
call dvout (logfil, n, workl, ndigit,
& '_neigh: Last row of the eigenvector matrix for H')
end if
c
c %----------------------------%
c | Compute the Ritz estimates |
c %----------------------------%
c
iconj = 0
do 20 i = 1, n
if ( abs( ritzi(i) ) .le. zero ) then
c
c %----------------------%
c | Real eigenvalue case |
c %----------------------%
c
bounds(i) = rnorm * abs( workl(i) )
else
c
c %-------------------------------------------%
c | Complex conjugate pair case. Note that |
c | since the real and imaginary part of |
c | the eigenvector are stored in consecutive |
c | columns, we need to take the magnitude |
c | of the last components of the two vectors |
c %-------------------------------------------%
c
if (iconj .eq. 0) then
bounds(i) = rnorm * dlapy2( workl(i), workl(i+1) )
bounds(i+1) = bounds(i)
iconj = 1
else
iconj = 0
end if
end if
20 continue
c
if (msglvl .gt. 2) then
call dvout (logfil, n, ritzr, ndigit,
& '_neigh: Real part of the eigenvalues of H')
call dvout (logfil, n, ritzi, ndigit,
& '_neigh: Imaginary part of the eigenvalues of H')
call dvout (logfil, n, bounds, ndigit,
& '_neigh: Ritz estimates for the eigenvalues of H')
end if
c
call second (t1)
tneigh = tneigh + (t1 - t0)
c
9000 continue
return
c
c %---------------%
c | End of dneigh |
c %---------------%
c
end