Projects/pyblm
Projects
/
pyblm
Archived
5
0
Fork 0
This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
pyblm/arpack/ARPACK/LAPACK/dlahqr.f

411 lines
13 KiB
Fortran

SUBROUTINE DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
$ ILOZ, IHIZ, Z, LDZ, INFO )
*
* -- LAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* October 31, 1992
*
* .. Scalar Arguments ..
LOGICAL WANTT, WANTZ
INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* DLAHQR is an auxiliary routine called by DHSEQR to update the
* eigenvalues and Schur decomposition already computed by DHSEQR, by
* dealing with the Hessenberg submatrix in rows and columns ILO to IHI.
*
* Arguments
* =========
*
* WANTT (input) LOGICAL
* = .TRUE. : the full Schur form T is required;
* = .FALSE.: only eigenvalues are required.
*
* WANTZ (input) LOGICAL
* = .TRUE. : the matrix of Schur vectors Z is required;
* = .FALSE.: Schur vectors are not required.
*
* N (input) INTEGER
* The order of the matrix H. N >= 0.
*
* ILO (input) INTEGER
* IHI (input) INTEGER
* It is assumed that H is already upper quasi-triangular in
* rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless
* ILO = 1). DLAHQR works primarily with the Hessenberg
* submatrix in rows and columns ILO to IHI, but applies
* transformations to all of H if WANTT is .TRUE..
* 1 <= ILO <= max(1,IHI); IHI <= N.
*
* H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
* On entry, the upper Hessenberg matrix H.
* On exit, if WANTT is .TRUE., H is upper quasi-triangular in
* rows and columns ILO:IHI, with any 2-by-2 diagonal blocks in
* standard form. If WANTT is .FALSE., the contents of H are
* unspecified on exit.
*
* LDH (input) INTEGER
* The leading dimension of the array H. LDH >= max(1,N).
*
* WR (output) DOUBLE PRECISION array, dimension (N)
* WI (output) DOUBLE PRECISION array, dimension (N)
* The real and imaginary parts, respectively, of the computed
* eigenvalues ILO to IHI are stored in the corresponding
* elements of WR and WI. If two eigenvalues are computed as a
* complex conjugate pair, they are stored in consecutive
* elements of WR and WI, say the i-th and (i+1)th, with
* WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
* eigenvalues are stored in the same order as on the diagonal
* of the Schur form returned in H, with WR(i) = H(i,i), and, if
* H(i:i+1,i:i+1) is a 2-by-2 diagonal block,
* WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).
*
* ILOZ (input) INTEGER
* IHIZ (input) INTEGER
* Specify the rows of Z to which transformations must be
* applied if WANTZ is .TRUE..
* 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
*
* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
* If WANTZ is .TRUE., on entry Z must contain the current
* matrix Z of transformations accumulated by DHSEQR, and on
* exit Z has been updated; transformations are applied only to
* the submatrix Z(ILOZ:IHIZ,ILO:IHI).
* If WANTZ is .FALSE., Z is not referenced.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* > 0: DLAHQR failed to compute all the eigenvalues ILO to IHI
* in a total of 30*(IHI-ILO+1) iterations; if INFO = i,
* elements i+1:ihi of WR and WI contain those eigenvalues
* which have been successfully computed.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
DOUBLE PRECISION DAT1, DAT2
PARAMETER ( DAT1 = 0.75D+0, DAT2 = -0.4375D+0 )
* ..
* .. Local Scalars ..
INTEGER I, I1, I2, ITN, ITS, J, K, L, M, NH, NR, NZ
DOUBLE PRECISION CS, H00, H10, H11, H12, H21, H22, H33, H33S,
$ H43H34, H44, H44S, OVFL, S, SMLNUM, SN, SUM,
$ T1, T2, T3, TST1, ULP, UNFL, V1, V2, V3
* ..
* .. Local Arrays ..
DOUBLE PRECISION V( 3 ), WORK( 1 )
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANHS
EXTERNAL DLAMCH, DLANHS
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DLABAD, DLANV2, DLARFG, DROT
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. Executable Statements ..
*
INFO = 0
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
IF( ILO.EQ.IHI ) THEN
WR( ILO ) = H( ILO, ILO )
WI( ILO ) = ZERO
RETURN
END IF
*
NH = IHI - ILO + 1
NZ = IHIZ - ILOZ + 1
*
* Set machine-dependent constants for the stopping criterion.
* If norm(H) <= sqrt(OVFL), overflow should not occur.
*
UNFL = DLAMCH( 'Safe minimum' )
OVFL = ONE / UNFL
CALL DLABAD( UNFL, OVFL )
ULP = DLAMCH( 'Precision' )
SMLNUM = UNFL*( NH / ULP )
*
* I1 and I2 are the indices of the first row and last column of H
* to which transformations must be applied. If eigenvalues only are
* being computed, I1 and I2 are set inside the main loop.
*
IF( WANTT ) THEN
I1 = 1
I2 = N
END IF
*
* ITN is the total number of QR iterations allowed.
*
ITN = 30*NH
*
* The main loop begins here. I is the loop index and decreases from
* IHI to ILO in steps of 1 or 2. Each iteration of the loop works
* with the active submatrix in rows and columns L to I.
* Eigenvalues I+1 to IHI have already converged. Either L = ILO or
* H(L,L-1) is negligible so that the matrix splits.
*
I = IHI
10 CONTINUE
L = ILO
IF( I.LT.ILO )
$ GO TO 150
*
* Perform QR iterations on rows and columns ILO to I until a
* submatrix of order 1 or 2 splits off at the bottom because a
* subdiagonal element has become negligible.
*
DO 130 ITS = 0, ITN
*
* Look for a single small subdiagonal element.
*
DO 20 K = I, L + 1, -1
TST1 = ABS( H( K-1, K-1 ) ) + ABS( H( K, K ) )
IF( TST1.EQ.ZERO )
$ TST1 = DLANHS( '1', I-L+1, H( L, L ), LDH, WORK )
IF( ABS( H( K, K-1 ) ).LE.MAX( ULP*TST1, SMLNUM ) )
$ GO TO 30
20 CONTINUE
30 CONTINUE
L = K
IF( L.GT.ILO ) THEN
*
* H(L,L-1) is negligible
*
H( L, L-1 ) = ZERO
END IF
*
* Exit from loop if a submatrix of order 1 or 2 has split off.
*
IF( L.GE.I-1 )
$ GO TO 140
*
* Now the active submatrix is in rows and columns L to I. If
* eigenvalues only are being computed, only the active submatrix
* need be transformed.
*
IF( .NOT.WANTT ) THEN
I1 = L
I2 = I
END IF
*
IF( ITS.EQ.10 .OR. ITS.EQ.20 ) THEN
*
* Exceptional shift.
*
S = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
H44 = DAT1*S
H33 = H44
H43H34 = DAT2*S*S
ELSE
*
* Prepare to use Wilkinson's double shift
*
H44 = H( I, I )
H33 = H( I-1, I-1 )
H43H34 = H( I, I-1 )*H( I-1, I )
END IF
*
* Look for two consecutive small subdiagonal elements.
*
DO 40 M = I - 2, L, -1
*
* Determine the effect of starting the double-shift QR
* iteration at row M, and see if this would make H(M,M-1)
* negligible.
*
H11 = H( M, M )
H22 = H( M+1, M+1 )
H21 = H( M+1, M )
H12 = H( M, M+1 )
H44S = H44 - H11
H33S = H33 - H11
V1 = ( H33S*H44S-H43H34 ) / H21 + H12
V2 = H22 - H11 - H33S - H44S
V3 = H( M+2, M+1 )
S = ABS( V1 ) + ABS( V2 ) + ABS( V3 )
V1 = V1 / S
V2 = V2 / S
V3 = V3 / S
V( 1 ) = V1
V( 2 ) = V2
V( 3 ) = V3
IF( M.EQ.L )
$ GO TO 50
H00 = H( M-1, M-1 )
H10 = H( M, M-1 )
TST1 = ABS( V1 )*( ABS( H00 )+ABS( H11 )+ABS( H22 ) )
IF( ABS( H10 )*( ABS( V2 )+ABS( V3 ) ).LE.ULP*TST1 )
$ GO TO 50
40 CONTINUE
50 CONTINUE
*
* Double-shift QR step
*
DO 120 K = M, I - 1
*
* The first iteration of this loop determines a reflection G
* from the vector V and applies it from left and right to H,
* thus creating a nonzero bulge below the subdiagonal.
*
* Each subsequent iteration determines a reflection G to
* restore the Hessenberg form in the (K-1)th column, and thus
* chases the bulge one step toward the bottom of the active
* submatrix. NR is the order of G.
*
NR = MIN( 3, I-K+1 )
IF( K.GT.M )
$ CALL DCOPY( NR, H( K, K-1 ), 1, V, 1 )
CALL DLARFG( NR, V( 1 ), V( 2 ), 1, T1 )
IF( K.GT.M ) THEN
H( K, K-1 ) = V( 1 )
H( K+1, K-1 ) = ZERO
IF( K.LT.I-1 )
$ H( K+2, K-1 ) = ZERO
ELSE IF( M.GT.L ) THEN
H( K, K-1 ) = -H( K, K-1 )
END IF
V2 = V( 2 )
T2 = T1*V2
IF( NR.EQ.3 ) THEN
V3 = V( 3 )
T3 = T1*V3
*
* Apply G from the left to transform the rows of the matrix
* in columns K to I2.
*
DO 60 J = K, I2
SUM = H( K, J ) + V2*H( K+1, J ) + V3*H( K+2, J )
H( K, J ) = H( K, J ) - SUM*T1
H( K+1, J ) = H( K+1, J ) - SUM*T2
H( K+2, J ) = H( K+2, J ) - SUM*T3
60 CONTINUE
*
* Apply G from the right to transform the columns of the
* matrix in rows I1 to min(K+3,I).
*
DO 70 J = I1, MIN( K+3, I )
SUM = H( J, K ) + V2*H( J, K+1 ) + V3*H( J, K+2 )
H( J, K ) = H( J, K ) - SUM*T1
H( J, K+1 ) = H( J, K+1 ) - SUM*T2
H( J, K+2 ) = H( J, K+2 ) - SUM*T3
70 CONTINUE
*
IF( WANTZ ) THEN
*
* Accumulate transformations in the matrix Z
*
DO 80 J = ILOZ, IHIZ
SUM = Z( J, K ) + V2*Z( J, K+1 ) + V3*Z( J, K+2 )
Z( J, K ) = Z( J, K ) - SUM*T1
Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
Z( J, K+2 ) = Z( J, K+2 ) - SUM*T3
80 CONTINUE
END IF
ELSE IF( NR.EQ.2 ) THEN
*
* Apply G from the left to transform the rows of the matrix
* in columns K to I2.
*
DO 90 J = K, I2
SUM = H( K, J ) + V2*H( K+1, J )
H( K, J ) = H( K, J ) - SUM*T1
H( K+1, J ) = H( K+1, J ) - SUM*T2
90 CONTINUE
*
* Apply G from the right to transform the columns of the
* matrix in rows I1 to min(K+3,I).
*
DO 100 J = I1, I
SUM = H( J, K ) + V2*H( J, K+1 )
H( J, K ) = H( J, K ) - SUM*T1
H( J, K+1 ) = H( J, K+1 ) - SUM*T2
100 CONTINUE
*
IF( WANTZ ) THEN
*
* Accumulate transformations in the matrix Z
*
DO 110 J = ILOZ, IHIZ
SUM = Z( J, K ) + V2*Z( J, K+1 )
Z( J, K ) = Z( J, K ) - SUM*T1
Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
110 CONTINUE
END IF
END IF
120 CONTINUE
*
130 CONTINUE
*
* Failure to converge in remaining number of iterations
*
INFO = I
RETURN
*
140 CONTINUE
*
IF( L.EQ.I ) THEN
*
* H(I,I-1) is negligible: one eigenvalue has converged.
*
WR( I ) = H( I, I )
WI( I ) = ZERO
ELSE IF( L.EQ.I-1 ) THEN
*
* H(I-1,I-2) is negligible: a pair of eigenvalues have converged.
*
* Transform the 2-by-2 submatrix to standard Schur form,
* and compute and store the eigenvalues.
*
CALL DLANV2( H( I-1, I-1 ), H( I-1, I ), H( I, I-1 ),
$ H( I, I ), WR( I-1 ), WI( I-1 ), WR( I ), WI( I ),
$ CS, SN )
*
IF( WANTT ) THEN
*
* Apply the transformation to the rest of H.
*
IF( I2.GT.I )
$ CALL DROT( I2-I, H( I-1, I+1 ), LDH, H( I, I+1 ), LDH,
$ CS, SN )
CALL DROT( I-I1-1, H( I1, I-1 ), 1, H( I1, I ), 1, CS, SN )
END IF
IF( WANTZ ) THEN
*
* Apply the transformation to Z.
*
CALL DROT( NZ, Z( ILOZ, I-1 ), 1, Z( ILOZ, I ), 1, CS, SN )
END IF
END IF
*
* Decrement number of remaining iterations, and return to start of
* the main loop with new value of I.
*
ITN = ITN - ITS
I = L - 1
GO TO 10
*
150 CONTINUE
RETURN
*
* End of DLAHQR
*
END