This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
pyblm/sandbox/powerit/sympowerit.c

117 lines
3.0 KiB
C

#include <cblas.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
/* =============== Main functions body ====================*/
int sympowerit(double *E, int n, double *T, int amax, double tol,
int maxiter, int verbose)
{
/*
PURPOSE: Estimate eigenvectos of a symmetric matrix using the power method.
CALLING SEQUENCE:
info = sympowerit(*E, n, *T, amax, tol, maxiter);
INPUTS:
E symmetric matrix from XX^T/X^TX of centered data matrix
type: *double
n elements in X first dimension
type: int
type: *double
T workspace for scores (m, amax)
type: *double
amax maximum number of principal components
type: int
tol convergence limit
type: double
maxiter maximum number of iteraitons
type: int
verbose the amount of debug output
*/
int iter, a, j;
int info = 0;
double sumsq, l2norm, *y,*x, sgn, diff, alpha;
double lambda = 0.0;
if (verbose>1) verbose=1;
/* Allocate space for working vector and eigenvector */
y = (double *) malloc(n*sizeof(double));
x = (double *) malloc(n*sizeof(double));
/* Loop over all components to be estimated*/
for (a=0; a<=amax-1; a++){
/* Reset work-/eigen-vector*/
for (j=0; j<n; j++) {
y[j] = 0.0;
x[j] = T[(j*amax)+a];
}
/*x[0] = 1.0;*/
/* Main power-iteration loop */
for ( iter = 0; iter <= maxiter; iter++ ) {
/* Matrix-vector product */
/*cblas_dsymv (CblasRowMajor, CblasUpper, n, 1.0, E, n,
x, 1, 0.0, y, 1);*/
cblas_dgemv (CblasRowMajor, CblasNoTrans, n, n, 1.0, E, n,
x, 1, 0.0, y, 1);
/* Normalise y */
sumsq = y[0] * y[0];
lambda = x[0] * y[0];
for ( j = 1; j < n; j++ ) {
sumsq += y[j] * y[j];
lambda += x[j] * y[j];
}
l2norm = sqrt ( sumsq );
for ( j = 0; j < n; j++ ) y[j] /= l2norm;
/*Check for convergence */
sgn = ( lambda < 0 ? -1.0 : 1.0 );
diff = x[0] - sgn * y[0];
sumsq = diff * diff;
x[0] = y[0];
for ( j = 0; j < n; j++ ) {
diff = x[j] - sgn * y[j];
sumsq += diff * diff;
x[j] = y[j];
}
if ( sqrt ( sumsq ) < tol ) {
if (verbose == 1){
printf("\nComp: %d\n", a);
printf("Converged in %d iterations\n", iter);
}
break;
}
if (iter >= maxiter){
if (verbose == 1){
printf("\nComp: %d\n", a);
printf("Max iter reached.\n");
printf("Error: %.2E\n", sumsq);
}
info = 1;
break;
}
}
/* Calculate T */
for (j=0; j<n; j++){
y[j] = sgn*sqrt(sgn*lambda)*x[j];
T[(j*amax)+a] = y[j];
}
/* rank one deflation of residual matrix */
/*cblas_dsyr (CblasRowMajor, CblasUpper, n, -1.0, x, 1, E, n);*/
alpha = -1.0*lambda;
cblas_dger (CblasRowMajor, n, n, alpha, x, 1, x, 1, E, n);
}
/* Free used space */
free(x);
free(y);
return (info);
}