Added arpack with bindings from scipy sandbox.
This commit is contained in:
384
arpack/ARPACK/LAPACK/clahqr.f
Normal file
384
arpack/ARPACK/LAPACK/clahqr.f
Normal file
@@ -0,0 +1,384 @@
|
||||
SUBROUTINE CLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
|
||||
$ IHIZ, Z, LDZ, INFO )
|
||||
*
|
||||
* -- LAPACK auxiliary routine (version 2.0) --
|
||||
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
||||
* Courant Institute, Argonne National Lab, and Rice University
|
||||
* September 30, 1994
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
LOGICAL WANTT, WANTZ
|
||||
INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
COMPLEX H( LDH, * ), W( * ), Z( LDZ, * )
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* CLAHQR is an auxiliary routine called by CHSEQR to update the
|
||||
* eigenvalues and Schur decomposition already computed by CHSEQR, by
|
||||
* dealing with the Hessenberg submatrix in rows and columns ILO to IHI.
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* WANTT (input) LOGICAL
|
||||
* = .TRUE. : the full Schur form T is required;
|
||||
* = .FALSE.: only eigenvalues are required.
|
||||
*
|
||||
* WANTZ (input) LOGICAL
|
||||
* = .TRUE. : the matrix of Schur vectors Z is required;
|
||||
* = .FALSE.: Schur vectors are not required.
|
||||
*
|
||||
* N (input) INTEGER
|
||||
* The order of the matrix H. N >= 0.
|
||||
*
|
||||
* ILO (input) INTEGER
|
||||
* IHI (input) INTEGER
|
||||
* It is assumed that H is already upper triangular in rows and
|
||||
* columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless ILO = 1).
|
||||
* CLAHQR works primarily with the Hessenberg submatrix in rows
|
||||
* and columns ILO to IHI, but applies transformations to all of
|
||||
* H if WANTT is .TRUE..
|
||||
* 1 <= ILO <= max(1,IHI); IHI <= N.
|
||||
*
|
||||
* H (input/output) COMPLEX array, dimension (LDH,N)
|
||||
* On entry, the upper Hessenberg matrix H.
|
||||
* On exit, if WANTT is .TRUE., H is upper triangular in rows
|
||||
* and columns ILO:IHI, with any 2-by-2 diagonal blocks in
|
||||
* standard form. If WANTT is .FALSE., the contents of H are
|
||||
* unspecified on exit.
|
||||
*
|
||||
* LDH (input) INTEGER
|
||||
* The leading dimension of the array H. LDH >= max(1,N).
|
||||
*
|
||||
* W (output) COMPLEX array, dimension (N)
|
||||
* The computed eigenvalues ILO to IHI are stored in the
|
||||
* corresponding elements of W. If WANTT is .TRUE., the
|
||||
* eigenvalues are stored in the same order as on the diagonal
|
||||
* of the Schur form returned in H, with W(i) = H(i,i).
|
||||
*
|
||||
* ILOZ (input) INTEGER
|
||||
* IHIZ (input) INTEGER
|
||||
* Specify the rows of Z to which transformations must be
|
||||
* applied if WANTZ is .TRUE..
|
||||
* 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
|
||||
*
|
||||
* Z (input/output) COMPLEX array, dimension (LDZ,N)
|
||||
* If WANTZ is .TRUE., on entry Z must contain the current
|
||||
* matrix Z of transformations accumulated by CHSEQR, and on
|
||||
* exit Z has been updated; transformations are applied only to
|
||||
* the submatrix Z(ILOZ:IHIZ,ILO:IHI).
|
||||
* If WANTZ is .FALSE., Z is not referenced.
|
||||
*
|
||||
* LDZ (input) INTEGER
|
||||
* The leading dimension of the array Z. LDZ >= max(1,N).
|
||||
*
|
||||
* INFO (output) INTEGER
|
||||
* = 0: successful exit
|
||||
* > 0: if INFO = i, CLAHQR failed to compute all the
|
||||
* eigenvalues ILO to IHI in a total of 30*(IHI-ILO+1)
|
||||
* iterations; elements i+1:ihi of W contain those
|
||||
* eigenvalues which have been successfully computed.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
COMPLEX ZERO, ONE
|
||||
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ),
|
||||
$ ONE = ( 1.0E+0, 0.0E+0 ) )
|
||||
REAL RZERO, HALF
|
||||
PARAMETER ( RZERO = 0.0E+0, HALF = 0.5E+0 )
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
INTEGER I, I1, I2, ITN, ITS, J, K, L, M, NH, NZ
|
||||
REAL H10, H21, RTEMP, S, SMLNUM, T2, TST1, ULP
|
||||
COMPLEX CDUM, H11, H11S, H22, SUM, T, T1, TEMP, U, V2,
|
||||
$ X, Y
|
||||
* ..
|
||||
* .. Local Arrays ..
|
||||
REAL RWORK( 1 )
|
||||
COMPLEX V( 2 )
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
REAL CLANHS, SLAMCH
|
||||
COMPLEX CLADIV
|
||||
EXTERNAL CLANHS, SLAMCH, CLADIV
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL CCOPY, CLARFG, CSCAL
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS, AIMAG, CONJG, MAX, MIN, REAL, SQRT
|
||||
* ..
|
||||
* .. Statement Functions ..
|
||||
REAL CABS1
|
||||
* ..
|
||||
* .. Statement Function definitions ..
|
||||
CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
|
||||
* ..
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
INFO = 0
|
||||
*
|
||||
* Quick return if possible
|
||||
*
|
||||
IF( N.EQ.0 )
|
||||
$ RETURN
|
||||
IF( ILO.EQ.IHI ) THEN
|
||||
W( ILO ) = H( ILO, ILO )
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
NH = IHI - ILO + 1
|
||||
NZ = IHIZ - ILOZ + 1
|
||||
*
|
||||
* Set machine-dependent constants for the stopping criterion.
|
||||
* If norm(H) <= sqrt(OVFL), overflow should not occur.
|
||||
*
|
||||
ULP = SLAMCH( 'Precision' )
|
||||
SMLNUM = SLAMCH( 'Safe minimum' ) / ULP
|
||||
*
|
||||
* I1 and I2 are the indices of the first row and last column of H
|
||||
* to which transformations must be applied. If eigenvalues only are
|
||||
* being computed, I1 and I2 are set inside the main loop.
|
||||
*
|
||||
IF( WANTT ) THEN
|
||||
I1 = 1
|
||||
I2 = N
|
||||
END IF
|
||||
*
|
||||
* ITN is the total number of QR iterations allowed.
|
||||
*
|
||||
ITN = 30*NH
|
||||
*
|
||||
* The main loop begins here. I is the loop index and decreases from
|
||||
* IHI to ILO in steps of 1. Each iteration of the loop works
|
||||
* with the active submatrix in rows and columns L to I.
|
||||
* Eigenvalues I+1 to IHI have already converged. Either L = ILO, or
|
||||
* H(L,L-1) is negligible so that the matrix splits.
|
||||
*
|
||||
I = IHI
|
||||
10 CONTINUE
|
||||
IF( I.LT.ILO )
|
||||
$ GO TO 130
|
||||
*
|
||||
* Perform QR iterations on rows and columns ILO to I until a
|
||||
* submatrix of order 1 splits off at the bottom because a
|
||||
* subdiagonal element has become negligible.
|
||||
*
|
||||
L = ILO
|
||||
DO 110 ITS = 0, ITN
|
||||
*
|
||||
* Look for a single small subdiagonal element.
|
||||
*
|
||||
DO 20 K = I, L + 1, -1
|
||||
TST1 = CABS1( H( K-1, K-1 ) ) + CABS1( H( K, K ) )
|
||||
IF( TST1.EQ.RZERO )
|
||||
$ TST1 = CLANHS( '1', I-L+1, H( L, L ), LDH, RWORK )
|
||||
IF( ABS( REAL( H( K, K-1 ) ) ).LE.MAX( ULP*TST1, SMLNUM ) )
|
||||
$ GO TO 30
|
||||
20 CONTINUE
|
||||
30 CONTINUE
|
||||
L = K
|
||||
IF( L.GT.ILO ) THEN
|
||||
*
|
||||
* H(L,L-1) is negligible
|
||||
*
|
||||
H( L, L-1 ) = ZERO
|
||||
END IF
|
||||
*
|
||||
* Exit from loop if a submatrix of order 1 has split off.
|
||||
*
|
||||
IF( L.GE.I )
|
||||
$ GO TO 120
|
||||
*
|
||||
* Now the active submatrix is in rows and columns L to I. If
|
||||
* eigenvalues only are being computed, only the active submatrix
|
||||
* need be transformed.
|
||||
*
|
||||
IF( .NOT.WANTT ) THEN
|
||||
I1 = L
|
||||
I2 = I
|
||||
END IF
|
||||
*
|
||||
IF( ITS.EQ.10 .OR. ITS.EQ.20 ) THEN
|
||||
*
|
||||
* Exceptional shift.
|
||||
*
|
||||
T = ABS( REAL( H( I, I-1 ) ) ) +
|
||||
$ ABS( REAL( H( I-1, I-2 ) ) )
|
||||
ELSE
|
||||
*
|
||||
* Wilkinson's shift.
|
||||
*
|
||||
T = H( I, I )
|
||||
U = H( I-1, I )*REAL( H( I, I-1 ) )
|
||||
IF( U.NE.ZERO ) THEN
|
||||
X = HALF*( H( I-1, I-1 )-T )
|
||||
Y = SQRT( X*X+U )
|
||||
IF( REAL( X )*REAL( Y )+AIMAG( X )*AIMAG( Y ).LT.RZERO )
|
||||
$ Y = -Y
|
||||
T = T - CLADIV( U, ( X+Y ) )
|
||||
END IF
|
||||
END IF
|
||||
*
|
||||
* Look for two consecutive small subdiagonal elements.
|
||||
*
|
||||
DO 40 M = I - 1, L + 1, -1
|
||||
*
|
||||
* Determine the effect of starting the single-shift QR
|
||||
* iteration at row M, and see if this would make H(M,M-1)
|
||||
* negligible.
|
||||
*
|
||||
H11 = H( M, M )
|
||||
H22 = H( M+1, M+1 )
|
||||
H11S = H11 - T
|
||||
H21 = H( M+1, M )
|
||||
S = CABS1( H11S ) + ABS( H21 )
|
||||
H11S = H11S / S
|
||||
H21 = H21 / S
|
||||
V( 1 ) = H11S
|
||||
V( 2 ) = H21
|
||||
H10 = H( M, M-1 )
|
||||
TST1 = CABS1( H11S )*( CABS1( H11 )+CABS1( H22 ) )
|
||||
IF( ABS( H10*H21 ).LE.ULP*TST1 )
|
||||
$ GO TO 50
|
||||
40 CONTINUE
|
||||
H11 = H( L, L )
|
||||
H22 = H( L+1, L+1 )
|
||||
H11S = H11 - T
|
||||
H21 = H( L+1, L )
|
||||
S = CABS1( H11S ) + ABS( H21 )
|
||||
H11S = H11S / S
|
||||
H21 = H21 / S
|
||||
V( 1 ) = H11S
|
||||
V( 2 ) = H21
|
||||
50 CONTINUE
|
||||
*
|
||||
* Single-shift QR step
|
||||
*
|
||||
DO 100 K = M, I - 1
|
||||
*
|
||||
* The first iteration of this loop determines a reflection G
|
||||
* from the vector V and applies it from left and right to H,
|
||||
* thus creating a nonzero bulge below the subdiagonal.
|
||||
*
|
||||
* Each subsequent iteration determines a reflection G to
|
||||
* restore the Hessenberg form in the (K-1)th column, and thus
|
||||
* chases the bulge one step toward the bottom of the active
|
||||
* submatrix.
|
||||
*
|
||||
* V(2) is always real before the call to CLARFG, and hence
|
||||
* after the call T2 ( = T1*V(2) ) is also real.
|
||||
*
|
||||
IF( K.GT.M )
|
||||
$ CALL CCOPY( 2, H( K, K-1 ), 1, V, 1 )
|
||||
CALL CLARFG( 2, V( 1 ), V( 2 ), 1, T1 )
|
||||
IF( K.GT.M ) THEN
|
||||
H( K, K-1 ) = V( 1 )
|
||||
H( K+1, K-1 ) = ZERO
|
||||
END IF
|
||||
V2 = V( 2 )
|
||||
T2 = REAL( T1*V2 )
|
||||
*
|
||||
* Apply G from the left to transform the rows of the matrix
|
||||
* in columns K to I2.
|
||||
*
|
||||
DO 60 J = K, I2
|
||||
SUM = CONJG( T1 )*H( K, J ) + T2*H( K+1, J )
|
||||
H( K, J ) = H( K, J ) - SUM
|
||||
H( K+1, J ) = H( K+1, J ) - SUM*V2
|
||||
60 CONTINUE
|
||||
*
|
||||
* Apply G from the right to transform the columns of the
|
||||
* matrix in rows I1 to min(K+2,I).
|
||||
*
|
||||
DO 70 J = I1, MIN( K+2, I )
|
||||
SUM = T1*H( J, K ) + T2*H( J, K+1 )
|
||||
H( J, K ) = H( J, K ) - SUM
|
||||
H( J, K+1 ) = H( J, K+1 ) - SUM*CONJG( V2 )
|
||||
70 CONTINUE
|
||||
*
|
||||
IF( WANTZ ) THEN
|
||||
*
|
||||
* Accumulate transformations in the matrix Z
|
||||
*
|
||||
DO 80 J = ILOZ, IHIZ
|
||||
SUM = T1*Z( J, K ) + T2*Z( J, K+1 )
|
||||
Z( J, K ) = Z( J, K ) - SUM
|
||||
Z( J, K+1 ) = Z( J, K+1 ) - SUM*CONJG( V2 )
|
||||
80 CONTINUE
|
||||
END IF
|
||||
*
|
||||
IF( K.EQ.M .AND. M.GT.L ) THEN
|
||||
*
|
||||
* If the QR step was started at row M > L because two
|
||||
* consecutive small subdiagonals were found, then extra
|
||||
* scaling must be performed to ensure that H(M,M-1) remains
|
||||
* real.
|
||||
*
|
||||
TEMP = ONE - T1
|
||||
TEMP = TEMP / ABS( TEMP )
|
||||
H( M+1, M ) = H( M+1, M )*CONJG( TEMP )
|
||||
IF( M+2.LE.I )
|
||||
$ H( M+2, M+1 ) = H( M+2, M+1 )*TEMP
|
||||
DO 90 J = M, I
|
||||
IF( J.NE.M+1 ) THEN
|
||||
IF( I2.GT.J )
|
||||
$ CALL CSCAL( I2-J, TEMP, H( J, J+1 ), LDH )
|
||||
CALL CSCAL( J-I1, CONJG( TEMP ), H( I1, J ), 1 )
|
||||
IF( WANTZ ) THEN
|
||||
CALL CSCAL( NZ, CONJG( TEMP ), Z( ILOZ, J ), 1 )
|
||||
END IF
|
||||
END IF
|
||||
90 CONTINUE
|
||||
END IF
|
||||
100 CONTINUE
|
||||
*
|
||||
* Ensure that H(I,I-1) is real.
|
||||
*
|
||||
TEMP = H( I, I-1 )
|
||||
IF( AIMAG( TEMP ).NE.RZERO ) THEN
|
||||
RTEMP = ABS( TEMP )
|
||||
H( I, I-1 ) = RTEMP
|
||||
TEMP = TEMP / RTEMP
|
||||
IF( I2.GT.I )
|
||||
$ CALL CSCAL( I2-I, CONJG( TEMP ), H( I, I+1 ), LDH )
|
||||
CALL CSCAL( I-I1, TEMP, H( I1, I ), 1 )
|
||||
IF( WANTZ ) THEN
|
||||
CALL CSCAL( NZ, TEMP, Z( ILOZ, I ), 1 )
|
||||
END IF
|
||||
END IF
|
||||
*
|
||||
110 CONTINUE
|
||||
*
|
||||
* Failure to converge in remaining number of iterations
|
||||
*
|
||||
INFO = I
|
||||
RETURN
|
||||
*
|
||||
120 CONTINUE
|
||||
*
|
||||
* H(I,I-1) is negligible: one eigenvalue has converged.
|
||||
*
|
||||
W( I ) = H( I, I )
|
||||
*
|
||||
* Decrement number of remaining iterations, and return to start of
|
||||
* the main loop with new value of I.
|
||||
*
|
||||
ITN = ITN - ITS
|
||||
I = L - 1
|
||||
GO TO 10
|
||||
*
|
||||
130 CONTINUE
|
||||
RETURN
|
||||
*
|
||||
* End of CLAHQR
|
||||
*
|
||||
END
|
||||
|
||||
|
||||
|
410
arpack/ARPACK/LAPACK/dlahqr.f
Normal file
410
arpack/ARPACK/LAPACK/dlahqr.f
Normal file
@@ -0,0 +1,410 @@
|
||||
SUBROUTINE DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
|
||||
$ ILOZ, IHIZ, Z, LDZ, INFO )
|
||||
*
|
||||
* -- LAPACK auxiliary routine (version 2.0) --
|
||||
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
||||
* Courant Institute, Argonne National Lab, and Rice University
|
||||
* October 31, 1992
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
LOGICAL WANTT, WANTZ
|
||||
INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
DOUBLE PRECISION H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * )
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DLAHQR is an auxiliary routine called by DHSEQR to update the
|
||||
* eigenvalues and Schur decomposition already computed by DHSEQR, by
|
||||
* dealing with the Hessenberg submatrix in rows and columns ILO to IHI.
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* WANTT (input) LOGICAL
|
||||
* = .TRUE. : the full Schur form T is required;
|
||||
* = .FALSE.: only eigenvalues are required.
|
||||
*
|
||||
* WANTZ (input) LOGICAL
|
||||
* = .TRUE. : the matrix of Schur vectors Z is required;
|
||||
* = .FALSE.: Schur vectors are not required.
|
||||
*
|
||||
* N (input) INTEGER
|
||||
* The order of the matrix H. N >= 0.
|
||||
*
|
||||
* ILO (input) INTEGER
|
||||
* IHI (input) INTEGER
|
||||
* It is assumed that H is already upper quasi-triangular in
|
||||
* rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless
|
||||
* ILO = 1). DLAHQR works primarily with the Hessenberg
|
||||
* submatrix in rows and columns ILO to IHI, but applies
|
||||
* transformations to all of H if WANTT is .TRUE..
|
||||
* 1 <= ILO <= max(1,IHI); IHI <= N.
|
||||
*
|
||||
* H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
|
||||
* On entry, the upper Hessenberg matrix H.
|
||||
* On exit, if WANTT is .TRUE., H is upper quasi-triangular in
|
||||
* rows and columns ILO:IHI, with any 2-by-2 diagonal blocks in
|
||||
* standard form. If WANTT is .FALSE., the contents of H are
|
||||
* unspecified on exit.
|
||||
*
|
||||
* LDH (input) INTEGER
|
||||
* The leading dimension of the array H. LDH >= max(1,N).
|
||||
*
|
||||
* WR (output) DOUBLE PRECISION array, dimension (N)
|
||||
* WI (output) DOUBLE PRECISION array, dimension (N)
|
||||
* The real and imaginary parts, respectively, of the computed
|
||||
* eigenvalues ILO to IHI are stored in the corresponding
|
||||
* elements of WR and WI. If two eigenvalues are computed as a
|
||||
* complex conjugate pair, they are stored in consecutive
|
||||
* elements of WR and WI, say the i-th and (i+1)th, with
|
||||
* WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
|
||||
* eigenvalues are stored in the same order as on the diagonal
|
||||
* of the Schur form returned in H, with WR(i) = H(i,i), and, if
|
||||
* H(i:i+1,i:i+1) is a 2-by-2 diagonal block,
|
||||
* WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).
|
||||
*
|
||||
* ILOZ (input) INTEGER
|
||||
* IHIZ (input) INTEGER
|
||||
* Specify the rows of Z to which transformations must be
|
||||
* applied if WANTZ is .TRUE..
|
||||
* 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
|
||||
*
|
||||
* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
|
||||
* If WANTZ is .TRUE., on entry Z must contain the current
|
||||
* matrix Z of transformations accumulated by DHSEQR, and on
|
||||
* exit Z has been updated; transformations are applied only to
|
||||
* the submatrix Z(ILOZ:IHIZ,ILO:IHI).
|
||||
* If WANTZ is .FALSE., Z is not referenced.
|
||||
*
|
||||
* LDZ (input) INTEGER
|
||||
* The leading dimension of the array Z. LDZ >= max(1,N).
|
||||
*
|
||||
* INFO (output) INTEGER
|
||||
* = 0: successful exit
|
||||
* > 0: DLAHQR failed to compute all the eigenvalues ILO to IHI
|
||||
* in a total of 30*(IHI-ILO+1) iterations; if INFO = i,
|
||||
* elements i+1:ihi of WR and WI contain those eigenvalues
|
||||
* which have been successfully computed.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
DOUBLE PRECISION ZERO, ONE
|
||||
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
||||
DOUBLE PRECISION DAT1, DAT2
|
||||
PARAMETER ( DAT1 = 0.75D+0, DAT2 = -0.4375D+0 )
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
INTEGER I, I1, I2, ITN, ITS, J, K, L, M, NH, NR, NZ
|
||||
DOUBLE PRECISION CS, H00, H10, H11, H12, H21, H22, H33, H33S,
|
||||
$ H43H34, H44, H44S, OVFL, S, SMLNUM, SN, SUM,
|
||||
$ T1, T2, T3, TST1, ULP, UNFL, V1, V2, V3
|
||||
* ..
|
||||
* .. Local Arrays ..
|
||||
DOUBLE PRECISION V( 3 ), WORK( 1 )
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
DOUBLE PRECISION DLAMCH, DLANHS
|
||||
EXTERNAL DLAMCH, DLANHS
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DCOPY, DLABAD, DLANV2, DLARFG, DROT
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS, MAX, MIN
|
||||
* ..
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
INFO = 0
|
||||
*
|
||||
* Quick return if possible
|
||||
*
|
||||
IF( N.EQ.0 )
|
||||
$ RETURN
|
||||
IF( ILO.EQ.IHI ) THEN
|
||||
WR( ILO ) = H( ILO, ILO )
|
||||
WI( ILO ) = ZERO
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
NH = IHI - ILO + 1
|
||||
NZ = IHIZ - ILOZ + 1
|
||||
*
|
||||
* Set machine-dependent constants for the stopping criterion.
|
||||
* If norm(H) <= sqrt(OVFL), overflow should not occur.
|
||||
*
|
||||
UNFL = DLAMCH( 'Safe minimum' )
|
||||
OVFL = ONE / UNFL
|
||||
CALL DLABAD( UNFL, OVFL )
|
||||
ULP = DLAMCH( 'Precision' )
|
||||
SMLNUM = UNFL*( NH / ULP )
|
||||
*
|
||||
* I1 and I2 are the indices of the first row and last column of H
|
||||
* to which transformations must be applied. If eigenvalues only are
|
||||
* being computed, I1 and I2 are set inside the main loop.
|
||||
*
|
||||
IF( WANTT ) THEN
|
||||
I1 = 1
|
||||
I2 = N
|
||||
END IF
|
||||
*
|
||||
* ITN is the total number of QR iterations allowed.
|
||||
*
|
||||
ITN = 30*NH
|
||||
*
|
||||
* The main loop begins here. I is the loop index and decreases from
|
||||
* IHI to ILO in steps of 1 or 2. Each iteration of the loop works
|
||||
* with the active submatrix in rows and columns L to I.
|
||||
* Eigenvalues I+1 to IHI have already converged. Either L = ILO or
|
||||
* H(L,L-1) is negligible so that the matrix splits.
|
||||
*
|
||||
I = IHI
|
||||
10 CONTINUE
|
||||
L = ILO
|
||||
IF( I.LT.ILO )
|
||||
$ GO TO 150
|
||||
*
|
||||
* Perform QR iterations on rows and columns ILO to I until a
|
||||
* submatrix of order 1 or 2 splits off at the bottom because a
|
||||
* subdiagonal element has become negligible.
|
||||
*
|
||||
DO 130 ITS = 0, ITN
|
||||
*
|
||||
* Look for a single small subdiagonal element.
|
||||
*
|
||||
DO 20 K = I, L + 1, -1
|
||||
TST1 = ABS( H( K-1, K-1 ) ) + ABS( H( K, K ) )
|
||||
IF( TST1.EQ.ZERO )
|
||||
$ TST1 = DLANHS( '1', I-L+1, H( L, L ), LDH, WORK )
|
||||
IF( ABS( H( K, K-1 ) ).LE.MAX( ULP*TST1, SMLNUM ) )
|
||||
$ GO TO 30
|
||||
20 CONTINUE
|
||||
30 CONTINUE
|
||||
L = K
|
||||
IF( L.GT.ILO ) THEN
|
||||
*
|
||||
* H(L,L-1) is negligible
|
||||
*
|
||||
H( L, L-1 ) = ZERO
|
||||
END IF
|
||||
*
|
||||
* Exit from loop if a submatrix of order 1 or 2 has split off.
|
||||
*
|
||||
IF( L.GE.I-1 )
|
||||
$ GO TO 140
|
||||
*
|
||||
* Now the active submatrix is in rows and columns L to I. If
|
||||
* eigenvalues only are being computed, only the active submatrix
|
||||
* need be transformed.
|
||||
*
|
||||
IF( .NOT.WANTT ) THEN
|
||||
I1 = L
|
||||
I2 = I
|
||||
END IF
|
||||
*
|
||||
IF( ITS.EQ.10 .OR. ITS.EQ.20 ) THEN
|
||||
*
|
||||
* Exceptional shift.
|
||||
*
|
||||
S = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
|
||||
H44 = DAT1*S
|
||||
H33 = H44
|
||||
H43H34 = DAT2*S*S
|
||||
ELSE
|
||||
*
|
||||
* Prepare to use Wilkinson's double shift
|
||||
*
|
||||
H44 = H( I, I )
|
||||
H33 = H( I-1, I-1 )
|
||||
H43H34 = H( I, I-1 )*H( I-1, I )
|
||||
END IF
|
||||
*
|
||||
* Look for two consecutive small subdiagonal elements.
|
||||
*
|
||||
DO 40 M = I - 2, L, -1
|
||||
*
|
||||
* Determine the effect of starting the double-shift QR
|
||||
* iteration at row M, and see if this would make H(M,M-1)
|
||||
* negligible.
|
||||
*
|
||||
H11 = H( M, M )
|
||||
H22 = H( M+1, M+1 )
|
||||
H21 = H( M+1, M )
|
||||
H12 = H( M, M+1 )
|
||||
H44S = H44 - H11
|
||||
H33S = H33 - H11
|
||||
V1 = ( H33S*H44S-H43H34 ) / H21 + H12
|
||||
V2 = H22 - H11 - H33S - H44S
|
||||
V3 = H( M+2, M+1 )
|
||||
S = ABS( V1 ) + ABS( V2 ) + ABS( V3 )
|
||||
V1 = V1 / S
|
||||
V2 = V2 / S
|
||||
V3 = V3 / S
|
||||
V( 1 ) = V1
|
||||
V( 2 ) = V2
|
||||
V( 3 ) = V3
|
||||
IF( M.EQ.L )
|
||||
$ GO TO 50
|
||||
H00 = H( M-1, M-1 )
|
||||
H10 = H( M, M-1 )
|
||||
TST1 = ABS( V1 )*( ABS( H00 )+ABS( H11 )+ABS( H22 ) )
|
||||
IF( ABS( H10 )*( ABS( V2 )+ABS( V3 ) ).LE.ULP*TST1 )
|
||||
$ GO TO 50
|
||||
40 CONTINUE
|
||||
50 CONTINUE
|
||||
*
|
||||
* Double-shift QR step
|
||||
*
|
||||
DO 120 K = M, I - 1
|
||||
*
|
||||
* The first iteration of this loop determines a reflection G
|
||||
* from the vector V and applies it from left and right to H,
|
||||
* thus creating a nonzero bulge below the subdiagonal.
|
||||
*
|
||||
* Each subsequent iteration determines a reflection G to
|
||||
* restore the Hessenberg form in the (K-1)th column, and thus
|
||||
* chases the bulge one step toward the bottom of the active
|
||||
* submatrix. NR is the order of G.
|
||||
*
|
||||
NR = MIN( 3, I-K+1 )
|
||||
IF( K.GT.M )
|
||||
$ CALL DCOPY( NR, H( K, K-1 ), 1, V, 1 )
|
||||
CALL DLARFG( NR, V( 1 ), V( 2 ), 1, T1 )
|
||||
IF( K.GT.M ) THEN
|
||||
H( K, K-1 ) = V( 1 )
|
||||
H( K+1, K-1 ) = ZERO
|
||||
IF( K.LT.I-1 )
|
||||
$ H( K+2, K-1 ) = ZERO
|
||||
ELSE IF( M.GT.L ) THEN
|
||||
H( K, K-1 ) = -H( K, K-1 )
|
||||
END IF
|
||||
V2 = V( 2 )
|
||||
T2 = T1*V2
|
||||
IF( NR.EQ.3 ) THEN
|
||||
V3 = V( 3 )
|
||||
T3 = T1*V3
|
||||
*
|
||||
* Apply G from the left to transform the rows of the matrix
|
||||
* in columns K to I2.
|
||||
*
|
||||
DO 60 J = K, I2
|
||||
SUM = H( K, J ) + V2*H( K+1, J ) + V3*H( K+2, J )
|
||||
H( K, J ) = H( K, J ) - SUM*T1
|
||||
H( K+1, J ) = H( K+1, J ) - SUM*T2
|
||||
H( K+2, J ) = H( K+2, J ) - SUM*T3
|
||||
60 CONTINUE
|
||||
*
|
||||
* Apply G from the right to transform the columns of the
|
||||
* matrix in rows I1 to min(K+3,I).
|
||||
*
|
||||
DO 70 J = I1, MIN( K+3, I )
|
||||
SUM = H( J, K ) + V2*H( J, K+1 ) + V3*H( J, K+2 )
|
||||
H( J, K ) = H( J, K ) - SUM*T1
|
||||
H( J, K+1 ) = H( J, K+1 ) - SUM*T2
|
||||
H( J, K+2 ) = H( J, K+2 ) - SUM*T3
|
||||
70 CONTINUE
|
||||
*
|
||||
IF( WANTZ ) THEN
|
||||
*
|
||||
* Accumulate transformations in the matrix Z
|
||||
*
|
||||
DO 80 J = ILOZ, IHIZ
|
||||
SUM = Z( J, K ) + V2*Z( J, K+1 ) + V3*Z( J, K+2 )
|
||||
Z( J, K ) = Z( J, K ) - SUM*T1
|
||||
Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
|
||||
Z( J, K+2 ) = Z( J, K+2 ) - SUM*T3
|
||||
80 CONTINUE
|
||||
END IF
|
||||
ELSE IF( NR.EQ.2 ) THEN
|
||||
*
|
||||
* Apply G from the left to transform the rows of the matrix
|
||||
* in columns K to I2.
|
||||
*
|
||||
DO 90 J = K, I2
|
||||
SUM = H( K, J ) + V2*H( K+1, J )
|
||||
H( K, J ) = H( K, J ) - SUM*T1
|
||||
H( K+1, J ) = H( K+1, J ) - SUM*T2
|
||||
90 CONTINUE
|
||||
*
|
||||
* Apply G from the right to transform the columns of the
|
||||
* matrix in rows I1 to min(K+3,I).
|
||||
*
|
||||
DO 100 J = I1, I
|
||||
SUM = H( J, K ) + V2*H( J, K+1 )
|
||||
H( J, K ) = H( J, K ) - SUM*T1
|
||||
H( J, K+1 ) = H( J, K+1 ) - SUM*T2
|
||||
100 CONTINUE
|
||||
*
|
||||
IF( WANTZ ) THEN
|
||||
*
|
||||
* Accumulate transformations in the matrix Z
|
||||
*
|
||||
DO 110 J = ILOZ, IHIZ
|
||||
SUM = Z( J, K ) + V2*Z( J, K+1 )
|
||||
Z( J, K ) = Z( J, K ) - SUM*T1
|
||||
Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
|
||||
110 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
120 CONTINUE
|
||||
*
|
||||
130 CONTINUE
|
||||
*
|
||||
* Failure to converge in remaining number of iterations
|
||||
*
|
||||
INFO = I
|
||||
RETURN
|
||||
*
|
||||
140 CONTINUE
|
||||
*
|
||||
IF( L.EQ.I ) THEN
|
||||
*
|
||||
* H(I,I-1) is negligible: one eigenvalue has converged.
|
||||
*
|
||||
WR( I ) = H( I, I )
|
||||
WI( I ) = ZERO
|
||||
ELSE IF( L.EQ.I-1 ) THEN
|
||||
*
|
||||
* H(I-1,I-2) is negligible: a pair of eigenvalues have converged.
|
||||
*
|
||||
* Transform the 2-by-2 submatrix to standard Schur form,
|
||||
* and compute and store the eigenvalues.
|
||||
*
|
||||
CALL DLANV2( H( I-1, I-1 ), H( I-1, I ), H( I, I-1 ),
|
||||
$ H( I, I ), WR( I-1 ), WI( I-1 ), WR( I ), WI( I ),
|
||||
$ CS, SN )
|
||||
*
|
||||
IF( WANTT ) THEN
|
||||
*
|
||||
* Apply the transformation to the rest of H.
|
||||
*
|
||||
IF( I2.GT.I )
|
||||
$ CALL DROT( I2-I, H( I-1, I+1 ), LDH, H( I, I+1 ), LDH,
|
||||
$ CS, SN )
|
||||
CALL DROT( I-I1-1, H( I1, I-1 ), 1, H( I1, I ), 1, CS, SN )
|
||||
END IF
|
||||
IF( WANTZ ) THEN
|
||||
*
|
||||
* Apply the transformation to Z.
|
||||
*
|
||||
CALL DROT( NZ, Z( ILOZ, I-1 ), 1, Z( ILOZ, I ), 1, CS, SN )
|
||||
END IF
|
||||
END IF
|
||||
*
|
||||
* Decrement number of remaining iterations, and return to start of
|
||||
* the main loop with new value of I.
|
||||
*
|
||||
ITN = ITN - ITS
|
||||
I = L - 1
|
||||
GO TO 10
|
||||
*
|
||||
150 CONTINUE
|
||||
RETURN
|
||||
*
|
||||
* End of DLAHQR
|
||||
*
|
||||
END
|
410
arpack/ARPACK/LAPACK/slahqr.f
Normal file
410
arpack/ARPACK/LAPACK/slahqr.f
Normal file
@@ -0,0 +1,410 @@
|
||||
SUBROUTINE SLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
|
||||
$ ILOZ, IHIZ, Z, LDZ, INFO )
|
||||
*
|
||||
* -- LAPACK auxiliary routine (version 2.0) --
|
||||
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
||||
* Courant Institute, Argonne National Lab, and Rice University
|
||||
* October 31, 1992
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
LOGICAL WANTT, WANTZ
|
||||
INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
REAL H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * )
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* SLAHQR is an auxiliary routine called by SHSEQR to update the
|
||||
* eigenvalues and Schur decomposition already computed by SHSEQR, by
|
||||
* dealing with the Hessenberg submatrix in rows and columns ILO to IHI.
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* WANTT (input) LOGICAL
|
||||
* = .TRUE. : the full Schur form T is required;
|
||||
* = .FALSE.: only eigenvalues are required.
|
||||
*
|
||||
* WANTZ (input) LOGICAL
|
||||
* = .TRUE. : the matrix of Schur vectors Z is required;
|
||||
* = .FALSE.: Schur vectors are not required.
|
||||
*
|
||||
* N (input) INTEGER
|
||||
* The order of the matrix H. N >= 0.
|
||||
*
|
||||
* ILO (input) INTEGER
|
||||
* IHI (input) INTEGER
|
||||
* It is assumed that H is already upper quasi-triangular in
|
||||
* rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless
|
||||
* ILO = 1). SLAHQR works primarily with the Hessenberg
|
||||
* submatrix in rows and columns ILO to IHI, but applies
|
||||
* transformations to all of H if WANTT is .TRUE..
|
||||
* 1 <= ILO <= max(1,IHI); IHI <= N.
|
||||
*
|
||||
* H (input/output) REAL array, dimension (LDH,N)
|
||||
* On entry, the upper Hessenberg matrix H.
|
||||
* On exit, if WANTT is .TRUE., H is upper quasi-triangular in
|
||||
* rows and columns ILO:IHI, with any 2-by-2 diagonal blocks in
|
||||
* standard form. If WANTT is .FALSE., the contents of H are
|
||||
* unspecified on exit.
|
||||
*
|
||||
* LDH (input) INTEGER
|
||||
* The leading dimension of the array H. LDH >= max(1,N).
|
||||
*
|
||||
* WR (output) REAL array, dimension (N)
|
||||
* WI (output) REAL array, dimension (N)
|
||||
* The real and imaginary parts, respectively, of the computed
|
||||
* eigenvalues ILO to IHI are stored in the corresponding
|
||||
* elements of WR and WI. If two eigenvalues are computed as a
|
||||
* complex conjugate pair, they are stored in consecutive
|
||||
* elements of WR and WI, say the i-th and (i+1)th, with
|
||||
* WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
|
||||
* eigenvalues are stored in the same order as on the diagonal
|
||||
* of the Schur form returned in H, with WR(i) = H(i,i), and, if
|
||||
* H(i:i+1,i:i+1) is a 2-by-2 diagonal block,
|
||||
* WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).
|
||||
*
|
||||
* ILOZ (input) INTEGER
|
||||
* IHIZ (input) INTEGER
|
||||
* Specify the rows of Z to which transformations must be
|
||||
* applied if WANTZ is .TRUE..
|
||||
* 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
|
||||
*
|
||||
* Z (input/output) REAL array, dimension (LDZ,N)
|
||||
* If WANTZ is .TRUE., on entry Z must contain the current
|
||||
* matrix Z of transformations accumulated by SHSEQR, and on
|
||||
* exit Z has been updated; transformations are applied only to
|
||||
* the submatrix Z(ILOZ:IHIZ,ILO:IHI).
|
||||
* If WANTZ is .FALSE., Z is not referenced.
|
||||
*
|
||||
* LDZ (input) INTEGER
|
||||
* The leading dimension of the array Z. LDZ >= max(1,N).
|
||||
*
|
||||
* INFO (output) INTEGER
|
||||
* = 0: successful exit
|
||||
* > 0: SLAHQR failed to compute all the eigenvalues ILO to IHI
|
||||
* in a total of 30*(IHI-ILO+1) iterations; if INFO = i,
|
||||
* elements i+1:ihi of WR and WI contain those eigenvalues
|
||||
* which have been successfully computed.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
REAL ZERO, ONE
|
||||
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
||||
REAL DAT1, DAT2
|
||||
PARAMETER ( DAT1 = 0.75E+0, DAT2 = -0.4375E+0 )
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
INTEGER I, I1, I2, ITN, ITS, J, K, L, M, NH, NR, NZ
|
||||
REAL CS, H00, H10, H11, H12, H21, H22, H33, H33S,
|
||||
$ H43H34, H44, H44S, OVFL, S, SMLNUM, SN, SUM,
|
||||
$ T1, T2, T3, TST1, ULP, UNFL, V1, V2, V3
|
||||
* ..
|
||||
* .. Local Arrays ..
|
||||
REAL V( 3 ), WORK( 1 )
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
REAL SLAMCH, SLANHS
|
||||
EXTERNAL SLAMCH, SLANHS
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL SCOPY, SLABAD, SLANV2, SLARFG, SROT
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS, MAX, MIN
|
||||
* ..
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
INFO = 0
|
||||
*
|
||||
* Quick return if possible
|
||||
*
|
||||
IF( N.EQ.0 )
|
||||
$ RETURN
|
||||
IF( ILO.EQ.IHI ) THEN
|
||||
WR( ILO ) = H( ILO, ILO )
|
||||
WI( ILO ) = ZERO
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
NH = IHI - ILO + 1
|
||||
NZ = IHIZ - ILOZ + 1
|
||||
*
|
||||
* Set machine-dependent constants for the stopping criterion.
|
||||
* If norm(H) <= sqrt(OVFL), overflow should not occur.
|
||||
*
|
||||
UNFL = SLAMCH( 'Safe minimum' )
|
||||
OVFL = ONE / UNFL
|
||||
CALL SLABAD( UNFL, OVFL )
|
||||
ULP = SLAMCH( 'Precision' )
|
||||
SMLNUM = UNFL*( NH / ULP )
|
||||
*
|
||||
* I1 and I2 are the indices of the first row and last column of H
|
||||
* to which transformations must be applied. If eigenvalues only are
|
||||
* being computed, I1 and I2 are set inside the main loop.
|
||||
*
|
||||
IF( WANTT ) THEN
|
||||
I1 = 1
|
||||
I2 = N
|
||||
END IF
|
||||
*
|
||||
* ITN is the total number of QR iterations allowed.
|
||||
*
|
||||
ITN = 30*NH
|
||||
*
|
||||
* The main loop begins here. I is the loop index and decreases from
|
||||
* IHI to ILO in steps of 1 or 2. Each iteration of the loop works
|
||||
* with the active submatrix in rows and columns L to I.
|
||||
* Eigenvalues I+1 to IHI have already converged. Either L = ILO or
|
||||
* H(L,L-1) is negligible so that the matrix splits.
|
||||
*
|
||||
I = IHI
|
||||
10 CONTINUE
|
||||
L = ILO
|
||||
IF( I.LT.ILO )
|
||||
$ GO TO 150
|
||||
*
|
||||
* Perform QR iterations on rows and columns ILO to I until a
|
||||
* submatrix of order 1 or 2 splits off at the bottom because a
|
||||
* subdiagonal element has become negligible.
|
||||
*
|
||||
DO 130 ITS = 0, ITN
|
||||
*
|
||||
* Look for a single small subdiagonal element.
|
||||
*
|
||||
DO 20 K = I, L + 1, -1
|
||||
TST1 = ABS( H( K-1, K-1 ) ) + ABS( H( K, K ) )
|
||||
IF( TST1.EQ.ZERO )
|
||||
$ TST1 = SLANHS( '1', I-L+1, H( L, L ), LDH, WORK )
|
||||
IF( ABS( H( K, K-1 ) ).LE.MAX( ULP*TST1, SMLNUM ) )
|
||||
$ GO TO 30
|
||||
20 CONTINUE
|
||||
30 CONTINUE
|
||||
L = K
|
||||
IF( L.GT.ILO ) THEN
|
||||
*
|
||||
* H(L,L-1) is negligible
|
||||
*
|
||||
H( L, L-1 ) = ZERO
|
||||
END IF
|
||||
*
|
||||
* Exit from loop if a submatrix of order 1 or 2 has split off.
|
||||
*
|
||||
IF( L.GE.I-1 )
|
||||
$ GO TO 140
|
||||
*
|
||||
* Now the active submatrix is in rows and columns L to I. If
|
||||
* eigenvalues only are being computed, only the active submatrix
|
||||
* need be transformed.
|
||||
*
|
||||
IF( .NOT.WANTT ) THEN
|
||||
I1 = L
|
||||
I2 = I
|
||||
END IF
|
||||
*
|
||||
IF( ITS.EQ.10 .OR. ITS.EQ.20 ) THEN
|
||||
*
|
||||
* Exceptional shift.
|
||||
*
|
||||
S = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
|
||||
H44 = DAT1*S
|
||||
H33 = H44
|
||||
H43H34 = DAT2*S*S
|
||||
ELSE
|
||||
*
|
||||
* Prepare to use Wilkinson's double shift
|
||||
*
|
||||
H44 = H( I, I )
|
||||
H33 = H( I-1, I-1 )
|
||||
H43H34 = H( I, I-1 )*H( I-1, I )
|
||||
END IF
|
||||
*
|
||||
* Look for two consecutive small subdiagonal elements.
|
||||
*
|
||||
DO 40 M = I - 2, L, -1
|
||||
*
|
||||
* Determine the effect of starting the double-shift QR
|
||||
* iteration at row M, and see if this would make H(M,M-1)
|
||||
* negligible.
|
||||
*
|
||||
H11 = H( M, M )
|
||||
H22 = H( M+1, M+1 )
|
||||
H21 = H( M+1, M )
|
||||
H12 = H( M, M+1 )
|
||||
H44S = H44 - H11
|
||||
H33S = H33 - H11
|
||||
V1 = ( H33S*H44S-H43H34 ) / H21 + H12
|
||||
V2 = H22 - H11 - H33S - H44S
|
||||
V3 = H( M+2, M+1 )
|
||||
S = ABS( V1 ) + ABS( V2 ) + ABS( V3 )
|
||||
V1 = V1 / S
|
||||
V2 = V2 / S
|
||||
V3 = V3 / S
|
||||
V( 1 ) = V1
|
||||
V( 2 ) = V2
|
||||
V( 3 ) = V3
|
||||
IF( M.EQ.L )
|
||||
$ GO TO 50
|
||||
H00 = H( M-1, M-1 )
|
||||
H10 = H( M, M-1 )
|
||||
TST1 = ABS( V1 )*( ABS( H00 )+ABS( H11 )+ABS( H22 ) )
|
||||
IF( ABS( H10 )*( ABS( V2 )+ABS( V3 ) ).LE.ULP*TST1 )
|
||||
$ GO TO 50
|
||||
40 CONTINUE
|
||||
50 CONTINUE
|
||||
*
|
||||
* Double-shift QR step
|
||||
*
|
||||
DO 120 K = M, I - 1
|
||||
*
|
||||
* The first iteration of this loop determines a reflection G
|
||||
* from the vector V and applies it from left and right to H,
|
||||
* thus creating a nonzero bulge below the subdiagonal.
|
||||
*
|
||||
* Each subsequent iteration determines a reflection G to
|
||||
* restore the Hessenberg form in the (K-1)th column, and thus
|
||||
* chases the bulge one step toward the bottom of the active
|
||||
* submatrix. NR is the order of G.
|
||||
*
|
||||
NR = MIN( 3, I-K+1 )
|
||||
IF( K.GT.M )
|
||||
$ CALL SCOPY( NR, H( K, K-1 ), 1, V, 1 )
|
||||
CALL SLARFG( NR, V( 1 ), V( 2 ), 1, T1 )
|
||||
IF( K.GT.M ) THEN
|
||||
H( K, K-1 ) = V( 1 )
|
||||
H( K+1, K-1 ) = ZERO
|
||||
IF( K.LT.I-1 )
|
||||
$ H( K+2, K-1 ) = ZERO
|
||||
ELSE IF( M.GT.L ) THEN
|
||||
H( K, K-1 ) = -H( K, K-1 )
|
||||
END IF
|
||||
V2 = V( 2 )
|
||||
T2 = T1*V2
|
||||
IF( NR.EQ.3 ) THEN
|
||||
V3 = V( 3 )
|
||||
T3 = T1*V3
|
||||
*
|
||||
* Apply G from the left to transform the rows of the matrix
|
||||
* in columns K to I2.
|
||||
*
|
||||
DO 60 J = K, I2
|
||||
SUM = H( K, J ) + V2*H( K+1, J ) + V3*H( K+2, J )
|
||||
H( K, J ) = H( K, J ) - SUM*T1
|
||||
H( K+1, J ) = H( K+1, J ) - SUM*T2
|
||||
H( K+2, J ) = H( K+2, J ) - SUM*T3
|
||||
60 CONTINUE
|
||||
*
|
||||
* Apply G from the right to transform the columns of the
|
||||
* matrix in rows I1 to min(K+3,I).
|
||||
*
|
||||
DO 70 J = I1, MIN( K+3, I )
|
||||
SUM = H( J, K ) + V2*H( J, K+1 ) + V3*H( J, K+2 )
|
||||
H( J, K ) = H( J, K ) - SUM*T1
|
||||
H( J, K+1 ) = H( J, K+1 ) - SUM*T2
|
||||
H( J, K+2 ) = H( J, K+2 ) - SUM*T3
|
||||
70 CONTINUE
|
||||
*
|
||||
IF( WANTZ ) THEN
|
||||
*
|
||||
* Accumulate transformations in the matrix Z
|
||||
*
|
||||
DO 80 J = ILOZ, IHIZ
|
||||
SUM = Z( J, K ) + V2*Z( J, K+1 ) + V3*Z( J, K+2 )
|
||||
Z( J, K ) = Z( J, K ) - SUM*T1
|
||||
Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
|
||||
Z( J, K+2 ) = Z( J, K+2 ) - SUM*T3
|
||||
80 CONTINUE
|
||||
END IF
|
||||
ELSE IF( NR.EQ.2 ) THEN
|
||||
*
|
||||
* Apply G from the left to transform the rows of the matrix
|
||||
* in columns K to I2.
|
||||
*
|
||||
DO 90 J = K, I2
|
||||
SUM = H( K, J ) + V2*H( K+1, J )
|
||||
H( K, J ) = H( K, J ) - SUM*T1
|
||||
H( K+1, J ) = H( K+1, J ) - SUM*T2
|
||||
90 CONTINUE
|
||||
*
|
||||
* Apply G from the right to transform the columns of the
|
||||
* matrix in rows I1 to min(K+3,I).
|
||||
*
|
||||
DO 100 J = I1, I
|
||||
SUM = H( J, K ) + V2*H( J, K+1 )
|
||||
H( J, K ) = H( J, K ) - SUM*T1
|
||||
H( J, K+1 ) = H( J, K+1 ) - SUM*T2
|
||||
100 CONTINUE
|
||||
*
|
||||
IF( WANTZ ) THEN
|
||||
*
|
||||
* Accumulate transformations in the matrix Z
|
||||
*
|
||||
DO 110 J = ILOZ, IHIZ
|
||||
SUM = Z( J, K ) + V2*Z( J, K+1 )
|
||||
Z( J, K ) = Z( J, K ) - SUM*T1
|
||||
Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
|
||||
110 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
120 CONTINUE
|
||||
*
|
||||
130 CONTINUE
|
||||
*
|
||||
* Failure to converge in remaining number of iterations
|
||||
*
|
||||
INFO = I
|
||||
RETURN
|
||||
*
|
||||
140 CONTINUE
|
||||
*
|
||||
IF( L.EQ.I ) THEN
|
||||
*
|
||||
* H(I,I-1) is negligible: one eigenvalue has converged.
|
||||
*
|
||||
WR( I ) = H( I, I )
|
||||
WI( I ) = ZERO
|
||||
ELSE IF( L.EQ.I-1 ) THEN
|
||||
*
|
||||
* H(I-1,I-2) is negligible: a pair of eigenvalues have converged.
|
||||
*
|
||||
* Transform the 2-by-2 submatrix to standard Schur form,
|
||||
* and compute and store the eigenvalues.
|
||||
*
|
||||
CALL SLANV2( H( I-1, I-1 ), H( I-1, I ), H( I, I-1 ),
|
||||
$ H( I, I ), WR( I-1 ), WI( I-1 ), WR( I ), WI( I ),
|
||||
$ CS, SN )
|
||||
*
|
||||
IF( WANTT ) THEN
|
||||
*
|
||||
* Apply the transformation to the rest of H.
|
||||
*
|
||||
IF( I2.GT.I )
|
||||
$ CALL SROT( I2-I, H( I-1, I+1 ), LDH, H( I, I+1 ), LDH,
|
||||
$ CS, SN )
|
||||
CALL SROT( I-I1-1, H( I1, I-1 ), 1, H( I1, I ), 1, CS, SN )
|
||||
END IF
|
||||
IF( WANTZ ) THEN
|
||||
*
|
||||
* Apply the transformation to Z.
|
||||
*
|
||||
CALL SROT( NZ, Z( ILOZ, I-1 ), 1, Z( ILOZ, I ), 1, CS, SN )
|
||||
END IF
|
||||
END IF
|
||||
*
|
||||
* Decrement number of remaining iterations, and return to start of
|
||||
* the main loop with new value of I.
|
||||
*
|
||||
ITN = ITN - ITS
|
||||
I = L - 1
|
||||
GO TO 10
|
||||
*
|
||||
150 CONTINUE
|
||||
RETURN
|
||||
*
|
||||
* End of SLAHQR
|
||||
*
|
||||
END
|
385
arpack/ARPACK/LAPACK/zlahqr.f
Normal file
385
arpack/ARPACK/LAPACK/zlahqr.f
Normal file
@@ -0,0 +1,385 @@
|
||||
SUBROUTINE ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
|
||||
$ IHIZ, Z, LDZ, INFO )
|
||||
*
|
||||
* -- LAPACK auxiliary routine (version 2.0) --
|
||||
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
||||
* Courant Institute, Argonne National Lab, and Rice University
|
||||
* September 30, 1994
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
LOGICAL WANTT, WANTZ
|
||||
INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
COMPLEX*16 H( LDH, * ), W( * ), Z( LDZ, * )
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* ZLAHQR is an auxiliary routine called by CHSEQR to update the
|
||||
* eigenvalues and Schur decomposition already computed by CHSEQR, by
|
||||
* dealing with the Hessenberg submatrix in rows and columns ILO to IHI.
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* WANTT (input) LOGICAL
|
||||
* = .TRUE. : the full Schur form T is required;
|
||||
* = .FALSE.: only eigenvalues are required.
|
||||
*
|
||||
* WANTZ (input) LOGICAL
|
||||
* = .TRUE. : the matrix of Schur vectors Z is required;
|
||||
* = .FALSE.: Schur vectors are not required.
|
||||
*
|
||||
* N (input) INTEGER
|
||||
* The order of the matrix H. N >= 0.
|
||||
*
|
||||
* ILO (input) INTEGER
|
||||
* IHI (input) INTEGER
|
||||
* It is assumed that H is already upper triangular in rows and
|
||||
* columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless ILO = 1).
|
||||
* ZLAHQR works primarily with the Hessenberg submatrix in rows
|
||||
* and columns ILO to IHI, but applies transformations to all of
|
||||
* H if WANTT is .TRUE..
|
||||
* 1 <= ILO <= max(1,IHI); IHI <= N.
|
||||
*
|
||||
* H (input/output) COMPLEX*16 array, dimension (LDH,N)
|
||||
* On entry, the upper Hessenberg matrix H.
|
||||
* On exit, if WANTT is .TRUE., H is upper triangular in rows
|
||||
* and columns ILO:IHI, with any 2-by-2 diagonal blocks in
|
||||
* standard form. If WANTT is .FALSE., the contents of H are
|
||||
* unspecified on exit.
|
||||
*
|
||||
* LDH (input) INTEGER
|
||||
* The leading dimension of the array H. LDH >= max(1,N).
|
||||
*
|
||||
* W (output) COMPLEX*16 array, dimension (N)
|
||||
* The computed eigenvalues ILO to IHI are stored in the
|
||||
* corresponding elements of W. If WANTT is .TRUE., the
|
||||
* eigenvalues are stored in the same order as on the diagonal
|
||||
* of the Schur form returned in H, with W(i) = H(i,i).
|
||||
*
|
||||
* ILOZ (input) INTEGER
|
||||
* IHIZ (input) INTEGER
|
||||
* Specify the rows of Z to which transformations must be
|
||||
* applied if WANTZ is .TRUE..
|
||||
* 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
|
||||
*
|
||||
* Z (input/output) COMPLEX*16 array, dimension (LDZ,N)
|
||||
* If WANTZ is .TRUE., on entry Z must contain the current
|
||||
* matrix Z of transformations accumulated by CHSEQR, and on
|
||||
* exit Z has been updated; transformations are applied only to
|
||||
* the submatrix Z(ILOZ:IHIZ,ILO:IHI).
|
||||
* If WANTZ is .FALSE., Z is not referenced.
|
||||
*
|
||||
* LDZ (input) INTEGER
|
||||
* The leading dimension of the array Z. LDZ >= max(1,N).
|
||||
*
|
||||
* INFO (output) INTEGER
|
||||
* = 0: successful exit
|
||||
* > 0: if INFO = i, ZLAHQR failed to compute all the
|
||||
* eigenvalues ILO to IHI in a total of 30*(IHI-ILO+1)
|
||||
* iterations; elements i+1:ihi of W contain those
|
||||
* eigenvalues which have been successfully computed.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
COMPLEX*16 ZERO, ONE
|
||||
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
|
||||
$ ONE = ( 1.0D+0, 0.0D+0 ) )
|
||||
DOUBLE PRECISION RZERO, HALF
|
||||
PARAMETER ( RZERO = 0.0D+0, HALF = 0.5D+0 )
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
INTEGER I, I1, I2, ITN, ITS, J, K, L, M, NH, NZ
|
||||
DOUBLE PRECISION H10, H21, RTEMP, S, SMLNUM, T2, TST1, ULP
|
||||
COMPLEX*16 CDUM, H11, H11S, H22, SUM, T, T1, TEMP, U, V2,
|
||||
$ X, Y
|
||||
* ..
|
||||
* .. Local Arrays ..
|
||||
DOUBLE PRECISION RWORK( 1 )
|
||||
COMPLEX*16 V( 2 )
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
DOUBLE PRECISION ZLANHS, DLAMCH
|
||||
COMPLEX*16 ZLADIV
|
||||
EXTERNAL ZLANHS, DLAMCH, ZLADIV
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL ZCOPY, ZLARFG, ZSCAL
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS, DIMAG, DCONJG, MAX, MIN, DBLE, SQRT
|
||||
* ..
|
||||
* .. Statement Functions ..
|
||||
DOUBLE PRECISION CABS1
|
||||
* ..
|
||||
* .. Statement Function definitions ..
|
||||
CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
|
||||
* ..
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
INFO = 0
|
||||
*
|
||||
* Quick return if possible
|
||||
*
|
||||
IF( N.EQ.0 )
|
||||
$ RETURN
|
||||
IF( ILO.EQ.IHI ) THEN
|
||||
W( ILO ) = H( ILO, ILO )
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
NH = IHI - ILO + 1
|
||||
NZ = IHIZ - ILOZ + 1
|
||||
*
|
||||
* Set machine-dependent constants for the stopping criterion.
|
||||
* If norm(H) <= sqrt(OVFL), overflow should not occur.
|
||||
*
|
||||
ULP = DLAMCH( 'Precision' )
|
||||
SMLNUM = DLAMCH( 'Safe minimum' ) / ULP
|
||||
*
|
||||
* I1 and I2 are the indices of the first row and last column of H
|
||||
* to which transformations must be applied. If eigenvalues only are
|
||||
* being computed, I1 and I2 are set inside the main loop.
|
||||
*
|
||||
IF( WANTT ) THEN
|
||||
I1 = 1
|
||||
I2 = N
|
||||
END IF
|
||||
*
|
||||
* ITN is the total number of QR iterations allowed.
|
||||
*
|
||||
ITN = 30*NH
|
||||
*
|
||||
* The main loop begins here. I is the loop index and decreases from
|
||||
* IHI to ILO in steps of 1. Each iteration of the loop works
|
||||
* with the active submatrix in rows and columns L to I.
|
||||
* Eigenvalues I+1 to IHI have already converged. Either L = ILO, or
|
||||
* H(L,L-1) is negligible so that the matrix splits.
|
||||
*
|
||||
I = IHI
|
||||
10 CONTINUE
|
||||
IF( I.LT.ILO )
|
||||
$ GO TO 130
|
||||
*
|
||||
* Perform QR iterations on rows and columns ILO to I until a
|
||||
* submatrix of order 1 splits off at the bottom because a
|
||||
* subdiagonal element has become negligible.
|
||||
*
|
||||
L = ILO
|
||||
DO 110 ITS = 0, ITN
|
||||
*
|
||||
* Look for a single small subdiagonal element.
|
||||
*
|
||||
DO 20 K = I, L + 1, -1
|
||||
TST1 = CABS1( H( K-1, K-1 ) ) + CABS1( H( K, K ) )
|
||||
IF( TST1.EQ.RZERO )
|
||||
$ TST1 = ZLANHS( '1', I-L+1, H( L, L ), LDH, RWORK )
|
||||
IF( ABS( DBLE( H( K, K-1 ) ) ).LE.MAX( ULP*TST1, SMLNUM ) )
|
||||
$ GO TO 30
|
||||
20 CONTINUE
|
||||
30 CONTINUE
|
||||
L = K
|
||||
IF( L.GT.ILO ) THEN
|
||||
*
|
||||
* H(L,L-1) is negligible
|
||||
*
|
||||
H( L, L-1 ) = ZERO
|
||||
END IF
|
||||
*
|
||||
* Exit from loop if a submatrix of order 1 has split off.
|
||||
*
|
||||
IF( L.GE.I )
|
||||
$ GO TO 120
|
||||
*
|
||||
* Now the active submatrix is in rows and columns L to I. If
|
||||
* eigenvalues only are being computed, only the active submatrix
|
||||
* need be transformed.
|
||||
*
|
||||
IF( .NOT.WANTT ) THEN
|
||||
I1 = L
|
||||
I2 = I
|
||||
END IF
|
||||
*
|
||||
IF( ITS.EQ.10 .OR. ITS.EQ.20 ) THEN
|
||||
*
|
||||
* Exceptional shift.
|
||||
*
|
||||
T = ABS( DBLE( H( I, I-1 ) ) ) +
|
||||
$ ABS( DBLE( H( I-1, I-2 ) ) )
|
||||
ELSE
|
||||
*
|
||||
* Wilkinson's shift.
|
||||
*
|
||||
T = H( I, I )
|
||||
U = H( I-1, I )*DBLE( H( I, I-1 ) )
|
||||
IF( U.NE.ZERO ) THEN
|
||||
X = HALF*( H( I-1, I-1 )-T )
|
||||
Y = SQRT( X*X+U )
|
||||
IF( DBLE( X )*DBLE( Y )+DIMAG( X )*DIMAG( Y ).LT.RZERO )
|
||||
$ Y = -Y
|
||||
T = T - ZLADIV( U, ( X+Y ) )
|
||||
END IF
|
||||
END IF
|
||||
*
|
||||
* Look for two consecutive small subdiagonal elements.
|
||||
*
|
||||
DO 40 M = I - 1, L + 1, -1
|
||||
*
|
||||
* Determine the effect of starting the single-shift QR
|
||||
* iteration at row M, and see if this would make H(M,M-1)
|
||||
* negligible.
|
||||
*
|
||||
H11 = H( M, M )
|
||||
H22 = H( M+1, M+1 )
|
||||
H11S = H11 - T
|
||||
H21 = H( M+1, M )
|
||||
S = CABS1( H11S ) + ABS( H21 )
|
||||
H11S = H11S / S
|
||||
H21 = H21 / S
|
||||
V( 1 ) = H11S
|
||||
V( 2 ) = H21
|
||||
H10 = H( M, M-1 )
|
||||
TST1 = CABS1( H11S )*( CABS1( H11 )+CABS1( H22 ) )
|
||||
IF( ABS( H10*H21 ).LE.ULP*TST1 )
|
||||
$ GO TO 50
|
||||
40 CONTINUE
|
||||
H11 = H( L, L )
|
||||
H22 = H( L+1, L+1 )
|
||||
H11S = H11 - T
|
||||
H21 = H( L+1, L )
|
||||
S = CABS1( H11S ) + ABS( H21 )
|
||||
H11S = H11S / S
|
||||
H21 = H21 / S
|
||||
V( 1 ) = H11S
|
||||
V( 2 ) = H21
|
||||
50 CONTINUE
|
||||
*
|
||||
* Single-shift QR step
|
||||
*
|
||||
DO 100 K = M, I - 1
|
||||
*
|
||||
* The first iteration of this loop determines a reflection G
|
||||
* from the vector V and applies it from left and right to H,
|
||||
* thus creating a nonzero bulge below the subdiagonal.
|
||||
*
|
||||
* Each subsequent iteration determines a reflection G to
|
||||
* restore the Hessenberg form in the (K-1)th column, and thus
|
||||
* chases the bulge one step toward the bottom of the active
|
||||
* submatrix.
|
||||
*
|
||||
* V(2) is always real before the call to ZLARFG, and hence
|
||||
* after the call T2 ( = T1*V(2) ) is also real.
|
||||
*
|
||||
IF( K.GT.M )
|
||||
$ CALL ZCOPY( 2, H( K, K-1 ), 1, V, 1 )
|
||||
CALL ZLARFG( 2, V( 1 ), V( 2 ), 1, T1 )
|
||||
IF( K.GT.M ) THEN
|
||||
H( K, K-1 ) = V( 1 )
|
||||
H( K+1, K-1 ) = ZERO
|
||||
END IF
|
||||
V2 = V( 2 )
|
||||
T2 = DBLE( T1*V2 )
|
||||
*
|
||||
* Apply G from the left to transform the rows of the matrix
|
||||
* in columns K to I2.
|
||||
*
|
||||
DO 60 J = K, I2
|
||||
SUM = DCONJG( T1 )*H( K, J ) + T2*H( K+1, J )
|
||||
H( K, J ) = H( K, J ) - SUM
|
||||
H( K+1, J ) = H( K+1, J ) - SUM*V2
|
||||
60 CONTINUE
|
||||
*
|
||||
* Apply G from the right to transform the columns of the
|
||||
* matrix in rows I1 to min(K+2,I).
|
||||
*
|
||||
DO 70 J = I1, MIN( K+2, I )
|
||||
SUM = T1*H( J, K ) + T2*H( J, K+1 )
|
||||
H( J, K ) = H( J, K ) - SUM
|
||||
H( J, K+1 ) = H( J, K+1 ) - SUM*DCONJG( V2 )
|
||||
70 CONTINUE
|
||||
*
|
||||
IF( WANTZ ) THEN
|
||||
*
|
||||
* Accumulate transformations in the matrix Z
|
||||
*
|
||||
DO 80 J = ILOZ, IHIZ
|
||||
SUM = T1*Z( J, K ) + T2*Z( J, K+1 )
|
||||
Z( J, K ) = Z( J, K ) - SUM
|
||||
Z( J, K+1 ) = Z( J, K+1 ) - SUM*DCONJG( V2 )
|
||||
80 CONTINUE
|
||||
END IF
|
||||
*
|
||||
IF( K.EQ.M .AND. M.GT.L ) THEN
|
||||
*
|
||||
* If the QR step was started at row M > L because two
|
||||
* consecutive small subdiagonals were found, then extra
|
||||
* scaling must be performed to ensure that H(M,M-1) remains
|
||||
* real.
|
||||
*
|
||||
TEMP = ONE - T1
|
||||
TEMP = TEMP / ABS( TEMP )
|
||||
H( M+1, M ) = H( M+1, M )*DCONJG( TEMP )
|
||||
IF( M+2.LE.I )
|
||||
$ H( M+2, M+1 ) = H( M+2, M+1 )*TEMP
|
||||
DO 90 J = M, I
|
||||
IF( J.NE.M+1 ) THEN
|
||||
IF( I2.GT.J )
|
||||
$ CALL ZSCAL( I2-J, TEMP, H( J, J+1 ), LDH )
|
||||
CALL ZSCAL( J-I1, DCONJG( TEMP ), H( I1, J ), 1 )
|
||||
IF( WANTZ ) THEN
|
||||
CALL ZSCAL( NZ, DCONJG( TEMP ),
|
||||
$ Z( ILOZ, J ), 1 )
|
||||
END IF
|
||||
END IF
|
||||
90 CONTINUE
|
||||
END IF
|
||||
100 CONTINUE
|
||||
*
|
||||
* Ensure that H(I,I-1) is real.
|
||||
*
|
||||
TEMP = H( I, I-1 )
|
||||
IF( DIMAG( TEMP ).NE.RZERO ) THEN
|
||||
RTEMP = ABS( TEMP )
|
||||
H( I, I-1 ) = RTEMP
|
||||
TEMP = TEMP / RTEMP
|
||||
IF( I2.GT.I )
|
||||
$ CALL ZSCAL( I2-I, DCONJG( TEMP ), H( I, I+1 ), LDH )
|
||||
CALL ZSCAL( I-I1, TEMP, H( I1, I ), 1 )
|
||||
IF( WANTZ ) THEN
|
||||
CALL ZSCAL( NZ, TEMP, Z( ILOZ, I ), 1 )
|
||||
END IF
|
||||
END IF
|
||||
*
|
||||
110 CONTINUE
|
||||
*
|
||||
* Failure to converge in remaining number of iterations
|
||||
*
|
||||
INFO = I
|
||||
RETURN
|
||||
*
|
||||
120 CONTINUE
|
||||
*
|
||||
* H(I,I-1) is negligible: one eigenvalue has converged.
|
||||
*
|
||||
W( I ) = H( I, I )
|
||||
*
|
||||
* Decrement number of remaining iterations, and return to start of
|
||||
* the main loop with new value of I.
|
||||
*
|
||||
ITN = ITN - ITS
|
||||
I = L - 1
|
||||
GO TO 10
|
||||
*
|
||||
130 CONTINUE
|
||||
RETURN
|
||||
*
|
||||
* End of ZLAHQR
|
||||
*
|
||||
END
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user