Mostly clean ups
This commit is contained in:
parent
2951ca4088
commit
4c809674bb
@ -12,7 +12,7 @@ from numpy.random import shuffle
|
|||||||
from engines import nipals_lpls as lpls
|
from engines import nipals_lpls as lpls
|
||||||
|
|
||||||
|
|
||||||
def lpls_val(X, Y, Z, a_max=2, nsets=None,alpha=.5, mean_ctr=[2,0,2], zorth=False, verbose=True):
|
def lpls_val(X, Y, Z, a_max=2, nsets=None,alpha=.5, mean_ctr=[2,0,2], zorth=False, verbose=False):
|
||||||
"""Performs crossvalidation for generalisation error in lpls.
|
"""Performs crossvalidation for generalisation error in lpls.
|
||||||
|
|
||||||
The L-PLS crossvalidation is estimated just like an ordinary pls
|
The L-PLS crossvalidation is estimated just like an ordinary pls
|
||||||
@ -80,11 +80,11 @@ def lpls_val(X, Y, Z, a_max=2, nsets=None,alpha=.5, mean_ctr=[2,0,2], zorth=Fals
|
|||||||
if mean_ctr[0] != 1:
|
if mean_ctr[0] != 1:
|
||||||
xi = X[val,:] - dat['mnx']
|
xi = X[val,:] - dat['mnx']
|
||||||
else:
|
else:
|
||||||
xi = X[val] - X[val].mean(1)[:,newaxis]
|
xi = X[val] - X[cal].mean(1)[:,newaxis]
|
||||||
if mean_ctr[2] != 1:
|
if mean_ctr[2] != 1:
|
||||||
ym = dat['mny']
|
ym = dat['mny']
|
||||||
else:
|
else:
|
||||||
ym = Y[val].mean(1)[:,newaxis] #???: check this
|
ym = Y[cal].mean(1)[:,newaxis]
|
||||||
# predictions
|
# predictions
|
||||||
for a in range(a_max):
|
for a in range(a_max):
|
||||||
Yhat[a,val,:] = atleast_2d(ym + dot(xi, dat['B'][a]))
|
Yhat[a,val,:] = atleast_2d(ym + dot(xi, dat['B'][a]))
|
||||||
@ -113,7 +113,7 @@ def lpls_val(X, Y, Z, a_max=2, nsets=None,alpha=.5, mean_ctr=[2,0,2], zorth=Fals
|
|||||||
def pca_jk(a, aopt, n_blocks=None):
|
def pca_jk(a, aopt, n_blocks=None):
|
||||||
"""Returns jack-knife segements from PCA.
|
"""Returns jack-knife segements from PCA.
|
||||||
|
|
||||||
Parameters:
|
*Parameters*:
|
||||||
|
|
||||||
a : {array}
|
a : {array}
|
||||||
data matrix (n x m)
|
data matrix (n x m)
|
||||||
@ -122,21 +122,15 @@ def pca_jk(a, aopt, n_blocks=None):
|
|||||||
nsets : {integer}
|
nsets : {integer}
|
||||||
number of segments
|
number of segments
|
||||||
|
|
||||||
Returns:
|
*Returns*:
|
||||||
|
|
||||||
Pcv : {array}
|
Pcv : {array}
|
||||||
Loadings collected in a three way matrix (n_segments, m, aopt)
|
Loadings collected in a three way matrix (n_segments, m, aopt)
|
||||||
|
|
||||||
Notes:
|
*Notes*:
|
||||||
|
|
||||||
- The loadings are scaled with the (1/samples)*eigenvalues.
|
|
||||||
|
|
||||||
- Crossvalidation method is currently set to random blocks of samples.
|
- Crossvalidation method is currently set to random blocks of samples.
|
||||||
|
|
||||||
- todo: add support for T
|
|
||||||
|
|
||||||
- fixme: more efficient to add this in validation loop?
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
if nsets == None:
|
if nsets == None:
|
||||||
nsets = a.shape[0]
|
nsets = a.shape[0]
|
||||||
@ -305,6 +299,7 @@ def cv(N, K, randomise=True, sequential=False):
|
|||||||
of length ~N/K, *without* replacement.
|
of length ~N/K, *without* replacement.
|
||||||
|
|
||||||
*Parameters*:
|
*Parameters*:
|
||||||
|
|
||||||
N : {integer}
|
N : {integer}
|
||||||
Total number of samples
|
Total number of samples
|
||||||
K : {integer}
|
K : {integer}
|
||||||
|
@ -12,13 +12,14 @@ minimum
|
|||||||
from numpy.linalg import inv,svd
|
from numpy.linalg import inv,svd
|
||||||
from scipy.sandbox import arpack
|
from scipy.sandbox import arpack
|
||||||
|
|
||||||
|
|
||||||
def pca(X, aopt, scale='scores', mode='normal', center_axis=0):
|
def pca(X, aopt, scale='scores', mode='normal', center_axis=0):
|
||||||
""" Principal Component Analysis.
|
""" Principal Component Analysis.
|
||||||
|
|
||||||
PCA is a low rank bilinear aprroximation to a data matrix that sequentially
|
PCA is a low rank bilinear aprroximation to a data matrix that sequentially
|
||||||
extracts orthogonal components of maximum variance.
|
extracts orthogonal components of maximum variance.
|
||||||
|
|
||||||
Parameters:
|
*Parameters*:
|
||||||
|
|
||||||
X : {array}
|
X : {array}
|
||||||
Data measurement matrix, (samples x variables)
|
Data measurement matrix, (samples x variables)
|
||||||
@ -27,7 +28,7 @@ def pca(X, aopt, scale='scores', mode='normal', center_axis=0):
|
|||||||
center_axis : {integer}
|
center_axis : {integer}
|
||||||
Center along given axis. If neg.: no centering (-inf,..., matrix modes)
|
Center along given axis. If neg.: no centering (-inf,..., matrix modes)
|
||||||
|
|
||||||
Returns:
|
*Returns*:
|
||||||
|
|
||||||
T : {array}
|
T : {array}
|
||||||
Scores, (samples, components)
|
Scores, (samples, components)
|
||||||
@ -47,7 +48,7 @@ def pca(X, aopt, scale='scores', mode='normal', center_axis=0):
|
|||||||
leverage : {array}
|
leverage : {array}
|
||||||
Leverages, (samples,)
|
Leverages, (samples,)
|
||||||
|
|
||||||
OtherParameters:
|
*OtherParameters*:
|
||||||
|
|
||||||
scale : {string}, optional
|
scale : {string}, optional
|
||||||
Where to put the weights [['scores'], 'loadings']
|
Where to put the weights [['scores'], 'loadings']
|
||||||
@ -55,7 +56,7 @@ def pca(X, aopt, scale='scores', mode='normal', center_axis=0):
|
|||||||
Amount of info retained, [['normal'], 'fast', 'detailed']
|
Amount of info retained, [['normal'], 'fast', 'detailed']
|
||||||
|
|
||||||
|
|
||||||
:SeeAlso:
|
*SeeAlso*:
|
||||||
|
|
||||||
`center` : Data centering
|
`center` : Data centering
|
||||||
|
|
||||||
@ -78,9 +79,11 @@ def pca(X, aopt, scale='scores', mode='normal', center_axis=0):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
m, n = X.shape
|
m, n = X.shape
|
||||||
assert(aopt<=min(m,n))
|
min_aopt = min(m, n)
|
||||||
if center_axis >= 0:
|
if center_axis >= 0:
|
||||||
X = X - expand_dims(X.mean(center_axis), center_axis)
|
X = X - expand_dims(X.mean(center_axis), center_axis)
|
||||||
|
min_aopt = min_aopt - 1
|
||||||
|
assert(aopt <= min_aopt)
|
||||||
if m > (n+100) or n > (m+100):
|
if m > (n+100) or n > (m+100):
|
||||||
u, s, v = esvd(X, aopt)
|
u, s, v = esvd(X, aopt)
|
||||||
else:
|
else:
|
||||||
@ -139,7 +142,7 @@ def pcr(a, b, aopt, scale='scores',mode='normal',center_axis=0):
|
|||||||
|
|
||||||
Performs PCR on given matrix and returns results in a dictionary.
|
Performs PCR on given matrix and returns results in a dictionary.
|
||||||
|
|
||||||
Parameters:
|
*Parameters*:
|
||||||
|
|
||||||
a : array
|
a : array
|
||||||
Data measurement matrix, (samples x variables)
|
Data measurement matrix, (samples x variables)
|
||||||
@ -148,18 +151,18 @@ def pcr(a, b, aopt, scale='scores',mode='normal',center_axis=0):
|
|||||||
aopt : int
|
aopt : int
|
||||||
Number of components to use, aopt<=min(samples, variables)
|
Number of components to use, aopt<=min(samples, variables)
|
||||||
|
|
||||||
Returns:
|
*Returns*:
|
||||||
|
|
||||||
results : dict
|
results : dict
|
||||||
keys -- values, T -- scores, P -- loadings, E -- residuals,
|
keys -- values, T -- scores, P -- loadings, E -- residuals,
|
||||||
levx -- leverages, ssqx -- sum of squares, expvarx -- cumulative
|
levx -- leverages, ssqx -- sum of squares, expvarx -- cumulative
|
||||||
explained variance, aopt -- number of components used
|
explained variance, aopt -- number of components used
|
||||||
|
|
||||||
OtherParameters:
|
*OtherParameters*:
|
||||||
|
|
||||||
mode : str
|
mode : {string}
|
||||||
Amount of info retained, ('fast', 'normal', 'detailed')
|
Amount of info retained, ('fast', 'normal', 'detailed')
|
||||||
center_axis : int
|
center_axis : {integer}
|
||||||
Center along given axis. If neg.: no centering (-inf,..., matrix modes)
|
Center along given axis. If neg.: no centering (-inf,..., matrix modes)
|
||||||
|
|
||||||
SeeAlso:
|
SeeAlso:
|
||||||
@ -284,7 +287,7 @@ def pls(X, Y, aopt=2, scale='scores', mode='normal', center_axis=-1):
|
|||||||
|
|
||||||
*SeeAlso*:
|
*SeeAlso*:
|
||||||
|
|
||||||
`center` : data centering
|
`center` - data centering
|
||||||
|
|
||||||
*Notes*
|
*Notes*
|
||||||
|
|
||||||
@ -311,13 +314,15 @@ def pls(X, Y, aopt=2, scale='scores', mode='normal', center_axis=-1):
|
|||||||
Y = atleast_2d(Y).T
|
Y = atleast_2d(Y).T
|
||||||
k, l = Y.shape
|
k, l = Y.shape
|
||||||
assert(m == k)
|
assert(m == k)
|
||||||
assert(aopt<min(m, n))
|
|
||||||
mnx, mny = 0, 0
|
mnx, mny = 0, 0
|
||||||
|
min_aopt = min(m, n)
|
||||||
if center_axis >= 0:
|
if center_axis >= 0:
|
||||||
mnx = expand_dims(X.mean(center_axis), center_axis)
|
mnx = expand_dims(X.mean(center_axis), center_axis)
|
||||||
X = X - mnx
|
X = X - mnx
|
||||||
|
min_aopt = min_aopt - 1
|
||||||
mny = expand_dims(Y.mean(center_axis), center_axis)
|
mny = expand_dims(Y.mean(center_axis), center_axis)
|
||||||
Y = Y - mny
|
Y = Y - mny
|
||||||
|
assert(aopt > 0 and aopt < min_aopt)
|
||||||
|
|
||||||
W = empty((n, aopt))
|
W = empty((n, aopt))
|
||||||
P = empty((n, aopt))
|
P = empty((n, aopt))
|
||||||
@ -356,7 +361,7 @@ def pls(X, Y, aopt=2, scale='scores', mode='normal', center_axis=-1):
|
|||||||
T[:,i] = t.ravel()
|
T[:,i] = t.ravel()
|
||||||
W[:,i] = w.ravel()
|
W[:,i] = w.ravel()
|
||||||
|
|
||||||
if mode=='fast' and i==aopt-1:
|
if mode == 'fast' and i == (aopt - 1):
|
||||||
if scale == 'loads':
|
if scale == 'loads':
|
||||||
tnorm = sqrt(tt)
|
tnorm = sqrt(tt)
|
||||||
T = T/tnorm
|
T = T/tnorm
|
||||||
@ -495,7 +500,7 @@ def nipals_lpls(X, Y, Z, a_max, alpha=.7, mean_ctr=[2, 0, 2], scale='scores', zo
|
|||||||
m, n = X.shape
|
m, n = X.shape
|
||||||
k, l = Y.shape
|
k, l = Y.shape
|
||||||
u, o = Z.shape
|
u, o = Z.shape
|
||||||
max_rank = min(m, n)
|
max_rank = min(m, n) + 1
|
||||||
assert (a_max > 0 and a_max < max_rank), "Number of comp error:\
|
assert (a_max > 0 and a_max < max_rank), "Number of comp error:\
|
||||||
tried: %d, max_rank: %d" %(a_max, max_rank)
|
tried: %d, max_rank: %d" %(a_max, max_rank)
|
||||||
|
|
||||||
@ -617,6 +622,20 @@ def nipals_lpls(X, Y, Z, a_max, alpha=.7, mean_ctr=[2, 0, 2], scale='scores', zo
|
|||||||
|
|
||||||
return {'T':T, 'W':W, 'P':P, 'Q':Q, 'U':U, 'L':L, 'K':K, 'B':B, 'E': E, 'F': F, 'G': G, 'evx':evx, 'evy':evy, 'evz':evz,'mnx': mnX, 'mny': mnY, 'mnz': mnZ}
|
return {'T':T, 'W':W, 'P':P, 'Q':Q, 'U':U, 'L':L, 'K':K, 'B':B, 'E': E, 'F': F, 'G': G, 'evx':evx, 'evy':evy, 'evz':evz,'mnx': mnX, 'mny': mnY, 'mnz': mnZ}
|
||||||
|
|
||||||
|
def lpls_predict(model_dict, x, aopt):
|
||||||
|
"""Predict lpls reponses from existing model on new data.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
m, n = x.shape
|
||||||
|
except:
|
||||||
|
x = atleast_2d(x.shape)
|
||||||
|
m, n = x.shape
|
||||||
|
|
||||||
|
if 'B0' in model_dict.keys():
|
||||||
|
y = model_dict['B0'] + dot()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def vnorm(a):
|
def vnorm(a):
|
||||||
"""Returns the norm of a vector.
|
"""Returns the norm of a vector.
|
||||||
|
|
||||||
@ -714,19 +733,19 @@ def _scale(a, axis):
|
|||||||
return a - sc, sc
|
return a - sc, sc
|
||||||
|
|
||||||
def esvd(data, a_max=None):
|
def esvd(data, a_max=None):
|
||||||
""" SVD with kernel calculation
|
"""SVD with kernel calculation.
|
||||||
|
|
||||||
Calculate subspaces of X'X or XX' depending on the shape
|
Calculate subspaces of X'X or XX' depending on the shape
|
||||||
of the matrix.
|
of the matrix.
|
||||||
|
|
||||||
Parameters:
|
*Parameters*:
|
||||||
|
|
||||||
data : {array}
|
data : {array}
|
||||||
Data matrix
|
Data matrix
|
||||||
a_max : {integer}
|
a_max : {integer}
|
||||||
Number of components to extract
|
Number of components to extract
|
||||||
|
|
||||||
Returns:
|
*Returns*:
|
||||||
|
|
||||||
u : {array}
|
u : {array}
|
||||||
Right hand eigenvectors
|
Right hand eigenvectors
|
||||||
@ -735,9 +754,9 @@ def esvd(data, a_max=None):
|
|||||||
v : {array}
|
v : {array}
|
||||||
Left hand eigenvectors
|
Left hand eigenvectors
|
||||||
|
|
||||||
notes:
|
*Notes*:
|
||||||
|
|
||||||
Uses Anoldi iterations (ARPACK)
|
Uses Anoldi iterations for the symmetric eigendecomp (ARPACK)
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user