508 lines
17 KiB
FortranFixed
508 lines
17 KiB
FortranFixed
|
c\BeginDoc
|
||
|
c
|
||
|
c\Name: znapps
|
||
|
c
|
||
|
c\Description:
|
||
|
c Given the Arnoldi factorization
|
||
|
c
|
||
|
c A*V_{k} - V_{k}*H_{k} = r_{k+p}*e_{k+p}^T,
|
||
|
c
|
||
|
c apply NP implicit shifts resulting in
|
||
|
c
|
||
|
c A*(V_{k}*Q) - (V_{k}*Q)*(Q^T* H_{k}*Q) = r_{k+p}*e_{k+p}^T * Q
|
||
|
c
|
||
|
c where Q is an orthogonal matrix which is the product of rotations
|
||
|
c and reflections resulting from the NP bulge change sweeps.
|
||
|
c The updated Arnoldi factorization becomes:
|
||
|
c
|
||
|
c A*VNEW_{k} - VNEW_{k}*HNEW_{k} = rnew_{k}*e_{k}^T.
|
||
|
c
|
||
|
c\Usage:
|
||
|
c call znapps
|
||
|
c ( N, KEV, NP, SHIFT, V, LDV, H, LDH, RESID, Q, LDQ,
|
||
|
c WORKL, WORKD )
|
||
|
c
|
||
|
c\Arguments
|
||
|
c N Integer. (INPUT)
|
||
|
c Problem size, i.e. size of matrix A.
|
||
|
c
|
||
|
c KEV Integer. (INPUT/OUTPUT)
|
||
|
c KEV+NP is the size of the input matrix H.
|
||
|
c KEV is the size of the updated matrix HNEW.
|
||
|
c
|
||
|
c NP Integer. (INPUT)
|
||
|
c Number of implicit shifts to be applied.
|
||
|
c
|
||
|
c SHIFT Complex*16 array of length NP. (INPUT)
|
||
|
c The shifts to be applied.
|
||
|
c
|
||
|
c V Complex*16 N by (KEV+NP) array. (INPUT/OUTPUT)
|
||
|
c On INPUT, V contains the current KEV+NP Arnoldi vectors.
|
||
|
c On OUTPUT, V contains the updated KEV Arnoldi vectors
|
||
|
c in the first KEV columns of V.
|
||
|
c
|
||
|
c LDV Integer. (INPUT)
|
||
|
c Leading dimension of V exactly as declared in the calling
|
||
|
c program.
|
||
|
c
|
||
|
c H Complex*16 (KEV+NP) by (KEV+NP) array. (INPUT/OUTPUT)
|
||
|
c On INPUT, H contains the current KEV+NP by KEV+NP upper
|
||
|
c Hessenberg matrix of the Arnoldi factorization.
|
||
|
c On OUTPUT, H contains the updated KEV by KEV upper Hessenberg
|
||
|
c matrix in the KEV leading submatrix.
|
||
|
c
|
||
|
c LDH Integer. (INPUT)
|
||
|
c Leading dimension of H exactly as declared in the calling
|
||
|
c program.
|
||
|
c
|
||
|
c RESID Complex*16 array of length N. (INPUT/OUTPUT)
|
||
|
c On INPUT, RESID contains the the residual vector r_{k+p}.
|
||
|
c On OUTPUT, RESID is the update residual vector rnew_{k}
|
||
|
c in the first KEV locations.
|
||
|
c
|
||
|
c Q Complex*16 KEV+NP by KEV+NP work array. (WORKSPACE)
|
||
|
c Work array used to accumulate the rotations and reflections
|
||
|
c during the bulge chase sweep.
|
||
|
c
|
||
|
c LDQ Integer. (INPUT)
|
||
|
c Leading dimension of Q exactly as declared in the calling
|
||
|
c program.
|
||
|
c
|
||
|
c WORKL Complex*16 work array of length (KEV+NP). (WORKSPACE)
|
||
|
c Private (replicated) array on each PE or array allocated on
|
||
|
c the front end.
|
||
|
c
|
||
|
c WORKD Complex*16 work array of length 2*N. (WORKSPACE)
|
||
|
c Distributed array used in the application of the accumulated
|
||
|
c orthogonal matrix Q.
|
||
|
c
|
||
|
c\EndDoc
|
||
|
c
|
||
|
c-----------------------------------------------------------------------
|
||
|
c
|
||
|
c\BeginLib
|
||
|
c
|
||
|
c\Local variables:
|
||
|
c xxxxxx Complex*16
|
||
|
c
|
||
|
c\References:
|
||
|
c 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
|
||
|
c a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
|
||
|
c pp 357-385.
|
||
|
c
|
||
|
c\Routines called:
|
||
|
c ivout ARPACK utility routine that prints integers.
|
||
|
c second ARPACK utility routine for timing.
|
||
|
c zmout ARPACK utility routine that prints matrices
|
||
|
c zvout ARPACK utility routine that prints vectors.
|
||
|
c zlacpy LAPACK matrix copy routine.
|
||
|
c zlanhs LAPACK routine that computes various norms of a matrix.
|
||
|
c zlartg LAPACK Givens rotation construction routine.
|
||
|
c zlaset LAPACK matrix initialization routine.
|
||
|
c dlabad LAPACK routine for defining the underflow and overflow
|
||
|
c limits.
|
||
|
c dlamch LAPACK routine that determines machine constants.
|
||
|
c dlapy2 LAPACK routine to compute sqrt(x**2+y**2) carefully.
|
||
|
c zgemv Level 2 BLAS routine for matrix vector multiplication.
|
||
|
c zaxpy Level 1 BLAS that computes a vector triad.
|
||
|
c zcopy Level 1 BLAS that copies one vector to another.
|
||
|
c zscal Level 1 BLAS that scales a vector.
|
||
|
c
|
||
|
c\Author
|
||
|
c Danny Sorensen Phuong Vu
|
||
|
c Richard Lehoucq CRPC / Rice University
|
||
|
c Dept. of Computational & Houston, Texas
|
||
|
c Applied Mathematics
|
||
|
c Rice University
|
||
|
c Houston, Texas
|
||
|
c
|
||
|
c\SCCS Information: @(#)
|
||
|
c FILE: napps.F SID: 2.3 DATE OF SID: 3/28/97 RELEASE: 2
|
||
|
c
|
||
|
c\Remarks
|
||
|
c 1. In this version, each shift is applied to all the sublocks of
|
||
|
c the Hessenberg matrix H and not just to the submatrix that it
|
||
|
c comes from. Deflation as in LAPACK routine zlahqr (QR algorithm
|
||
|
c for upper Hessenberg matrices ) is used.
|
||
|
c Upon output, the subdiagonals of H are enforced to be non-negative
|
||
|
c real numbers.
|
||
|
c
|
||
|
c\EndLib
|
||
|
c
|
||
|
c-----------------------------------------------------------------------
|
||
|
c
|
||
|
subroutine znapps
|
||
|
& ( n, kev, np, shift, v, ldv, h, ldh, resid, q, ldq,
|
||
|
& workl, workd )
|
||
|
c
|
||
|
c %----------------------------------------------------%
|
||
|
c | Include files for debugging and timing information |
|
||
|
c %----------------------------------------------------%
|
||
|
c
|
||
|
include 'debug.h'
|
||
|
include 'stat.h'
|
||
|
c
|
||
|
c %------------------%
|
||
|
c | Scalar Arguments |
|
||
|
c %------------------%
|
||
|
c
|
||
|
integer kev, ldh, ldq, ldv, n, np
|
||
|
c
|
||
|
c %-----------------%
|
||
|
c | Array Arguments |
|
||
|
c %-----------------%
|
||
|
c
|
||
|
Complex*16
|
||
|
& h(ldh,kev+np), resid(n), shift(np),
|
||
|
& v(ldv,kev+np), q(ldq,kev+np), workd(2*n), workl(kev+np)
|
||
|
c
|
||
|
c %------------%
|
||
|
c | Parameters |
|
||
|
c %------------%
|
||
|
c
|
||
|
Complex*16
|
||
|
& one, zero
|
||
|
Double precision
|
||
|
& rzero
|
||
|
parameter (one = (1.0D+0, 0.0D+0), zero = (0.0D+0, 0.0D+0),
|
||
|
& rzero = 0.0D+0)
|
||
|
c
|
||
|
c %------------------------%
|
||
|
c | Local Scalars & Arrays |
|
||
|
c %------------------------%
|
||
|
c
|
||
|
integer i, iend, istart, j, jj, kplusp, msglvl
|
||
|
logical first
|
||
|
Complex*16
|
||
|
& cdum, f, g, h11, h21, r, s, sigma, t
|
||
|
Double precision
|
||
|
& c, ovfl, smlnum, ulp, unfl, tst1
|
||
|
save first, ovfl, smlnum, ulp, unfl
|
||
|
c
|
||
|
c %----------------------%
|
||
|
c | External Subroutines |
|
||
|
c %----------------------%
|
||
|
c
|
||
|
external zaxpy, zcopy, zgemv, zscal, zlacpy, zlartg,
|
||
|
& zvout, zlaset, dlabad, zmout, second, ivout
|
||
|
c
|
||
|
c %--------------------%
|
||
|
c | External Functions |
|
||
|
c %--------------------%
|
||
|
c
|
||
|
Double precision
|
||
|
& zlanhs, dlamch, dlapy2
|
||
|
external zlanhs, dlamch, dlapy2
|
||
|
c
|
||
|
c %----------------------%
|
||
|
c | Intrinsics Functions |
|
||
|
c %----------------------%
|
||
|
c
|
||
|
intrinsic abs, dimag, conjg, dcmplx, max, min, dble
|
||
|
c
|
||
|
c %---------------------%
|
||
|
c | Statement Functions |
|
||
|
c %---------------------%
|
||
|
c
|
||
|
Double precision
|
||
|
& zabs1
|
||
|
zabs1( cdum ) = abs( dble( cdum ) ) + abs( dimag( cdum ) )
|
||
|
c
|
||
|
c %----------------%
|
||
|
c | Data statments |
|
||
|
c %----------------%
|
||
|
c
|
||
|
data first / .true. /
|
||
|
c
|
||
|
c %-----------------------%
|
||
|
c | Executable Statements |
|
||
|
c %-----------------------%
|
||
|
c
|
||
|
if (first) then
|
||
|
c
|
||
|
c %-----------------------------------------------%
|
||
|
c | Set machine-dependent constants for the |
|
||
|
c | stopping criterion. If norm(H) <= sqrt(OVFL), |
|
||
|
c | overflow should not occur. |
|
||
|
c | REFERENCE: LAPACK subroutine zlahqr |
|
||
|
c %-----------------------------------------------%
|
||
|
c
|
||
|
unfl = dlamch( 'safe minimum' )
|
||
|
ovfl = dble(one / unfl)
|
||
|
call dlabad( unfl, ovfl )
|
||
|
ulp = dlamch( 'precision' )
|
||
|
smlnum = unfl*( n / ulp )
|
||
|
first = .false.
|
||
|
end if
|
||
|
c
|
||
|
c %-------------------------------%
|
||
|
c | Initialize timing statistics |
|
||
|
c | & message level for debugging |
|
||
|
c %-------------------------------%
|
||
|
c
|
||
|
call second (t0)
|
||
|
msglvl = mcapps
|
||
|
c
|
||
|
kplusp = kev + np
|
||
|
c
|
||
|
c %--------------------------------------------%
|
||
|
c | Initialize Q to the identity to accumulate |
|
||
|
c | the rotations and reflections |
|
||
|
c %--------------------------------------------%
|
||
|
c
|
||
|
call zlaset ('All', kplusp, kplusp, zero, one, q, ldq)
|
||
|
c
|
||
|
c %----------------------------------------------%
|
||
|
c | Quick return if there are no shifts to apply |
|
||
|
c %----------------------------------------------%
|
||
|
c
|
||
|
if (np .eq. 0) go to 9000
|
||
|
c
|
||
|
c %----------------------------------------------%
|
||
|
c | Chase the bulge with the application of each |
|
||
|
c | implicit shift. Each shift is applied to the |
|
||
|
c | whole matrix including each block. |
|
||
|
c %----------------------------------------------%
|
||
|
c
|
||
|
do 110 jj = 1, np
|
||
|
sigma = shift(jj)
|
||
|
c
|
||
|
if (msglvl .gt. 2 ) then
|
||
|
call ivout (logfil, 1, jj, ndigit,
|
||
|
& '_napps: shift number.')
|
||
|
call zvout (logfil, 1, sigma, ndigit,
|
||
|
& '_napps: Value of the shift ')
|
||
|
end if
|
||
|
c
|
||
|
istart = 1
|
||
|
20 continue
|
||
|
c
|
||
|
do 30 i = istart, kplusp-1
|
||
|
c
|
||
|
c %----------------------------------------%
|
||
|
c | Check for splitting and deflation. Use |
|
||
|
c | a standard test as in the QR algorithm |
|
||
|
c | REFERENCE: LAPACK subroutine zlahqr |
|
||
|
c %----------------------------------------%
|
||
|
c
|
||
|
tst1 = zabs1( h( i, i ) ) + zabs1( h( i+1, i+1 ) )
|
||
|
if( tst1.eq.rzero )
|
||
|
& tst1 = zlanhs( '1', kplusp-jj+1, h, ldh, workl )
|
||
|
if ( abs(dble(h(i+1,i)))
|
||
|
& .le. max(ulp*tst1, smlnum) ) then
|
||
|
if (msglvl .gt. 0) then
|
||
|
call ivout (logfil, 1, i, ndigit,
|
||
|
& '_napps: matrix splitting at row/column no.')
|
||
|
call ivout (logfil, 1, jj, ndigit,
|
||
|
& '_napps: matrix splitting with shift number.')
|
||
|
call zvout (logfil, 1, h(i+1,i), ndigit,
|
||
|
& '_napps: off diagonal element.')
|
||
|
end if
|
||
|
iend = i
|
||
|
h(i+1,i) = zero
|
||
|
go to 40
|
||
|
end if
|
||
|
30 continue
|
||
|
iend = kplusp
|
||
|
40 continue
|
||
|
c
|
||
|
if (msglvl .gt. 2) then
|
||
|
call ivout (logfil, 1, istart, ndigit,
|
||
|
& '_napps: Start of current block ')
|
||
|
call ivout (logfil, 1, iend, ndigit,
|
||
|
& '_napps: End of current block ')
|
||
|
end if
|
||
|
c
|
||
|
c %------------------------------------------------%
|
||
|
c | No reason to apply a shift to block of order 1 |
|
||
|
c | or if the current block starts after the point |
|
||
|
c | of compression since we'll discard this stuff |
|
||
|
c %------------------------------------------------%
|
||
|
c
|
||
|
if ( istart .eq. iend .or. istart .gt. kev) go to 100
|
||
|
c
|
||
|
h11 = h(istart,istart)
|
||
|
h21 = h(istart+1,istart)
|
||
|
f = h11 - sigma
|
||
|
g = h21
|
||
|
c
|
||
|
do 80 i = istart, iend-1
|
||
|
c
|
||
|
c %------------------------------------------------------%
|
||
|
c | Construct the plane rotation G to zero out the bulge |
|
||
|
c %------------------------------------------------------%
|
||
|
c
|
||
|
call zlartg (f, g, c, s, r)
|
||
|
if (i .gt. istart) then
|
||
|
h(i,i-1) = r
|
||
|
h(i+1,i-1) = zero
|
||
|
end if
|
||
|
c
|
||
|
c %---------------------------------------------%
|
||
|
c | Apply rotation to the left of H; H <- G'*H |
|
||
|
c %---------------------------------------------%
|
||
|
c
|
||
|
do 50 j = i, kplusp
|
||
|
t = c*h(i,j) + s*h(i+1,j)
|
||
|
h(i+1,j) = -conjg(s)*h(i,j) + c*h(i+1,j)
|
||
|
h(i,j) = t
|
||
|
50 continue
|
||
|
c
|
||
|
c %---------------------------------------------%
|
||
|
c | Apply rotation to the right of H; H <- H*G |
|
||
|
c %---------------------------------------------%
|
||
|
c
|
||
|
do 60 j = 1, min(i+2,iend)
|
||
|
t = c*h(j,i) + conjg(s)*h(j,i+1)
|
||
|
h(j,i+1) = -s*h(j,i) + c*h(j,i+1)
|
||
|
h(j,i) = t
|
||
|
60 continue
|
||
|
c
|
||
|
c %-----------------------------------------------------%
|
||
|
c | Accumulate the rotation in the matrix Q; Q <- Q*G' |
|
||
|
c %-----------------------------------------------------%
|
||
|
c
|
||
|
do 70 j = 1, min(i+jj, kplusp)
|
||
|
t = c*q(j,i) + conjg(s)*q(j,i+1)
|
||
|
q(j,i+1) = - s*q(j,i) + c*q(j,i+1)
|
||
|
q(j,i) = t
|
||
|
70 continue
|
||
|
c
|
||
|
c %---------------------------%
|
||
|
c | Prepare for next rotation |
|
||
|
c %---------------------------%
|
||
|
c
|
||
|
if (i .lt. iend-1) then
|
||
|
f = h(i+1,i)
|
||
|
g = h(i+2,i)
|
||
|
end if
|
||
|
80 continue
|
||
|
c
|
||
|
c %-------------------------------%
|
||
|
c | Finished applying the shift. |
|
||
|
c %-------------------------------%
|
||
|
c
|
||
|
100 continue
|
||
|
c
|
||
|
c %---------------------------------------------------------%
|
||
|
c | Apply the same shift to the next block if there is any. |
|
||
|
c %---------------------------------------------------------%
|
||
|
c
|
||
|
istart = iend + 1
|
||
|
if (iend .lt. kplusp) go to 20
|
||
|
c
|
||
|
c %---------------------------------------------%
|
||
|
c | Loop back to the top to get the next shift. |
|
||
|
c %---------------------------------------------%
|
||
|
c
|
||
|
110 continue
|
||
|
c
|
||
|
c %---------------------------------------------------%
|
||
|
c | Perform a similarity transformation that makes |
|
||
|
c | sure that the compressed H will have non-negative |
|
||
|
c | real subdiagonal elements. |
|
||
|
c %---------------------------------------------------%
|
||
|
c
|
||
|
do 120 j=1,kev
|
||
|
if ( dble( h(j+1,j) ) .lt. rzero .or.
|
||
|
& dimag( h(j+1,j) ) .ne. rzero ) then
|
||
|
t = h(j+1,j) / dlapy2(dble(h(j+1,j)),dimag(h(j+1,j)))
|
||
|
call zscal( kplusp-j+1, conjg(t), h(j+1,j), ldh )
|
||
|
call zscal( min(j+2, kplusp), t, h(1,j+1), 1 )
|
||
|
call zscal( min(j+np+1,kplusp), t, q(1,j+1), 1 )
|
||
|
h(j+1,j) = dcmplx( dble( h(j+1,j) ), rzero )
|
||
|
end if
|
||
|
120 continue
|
||
|
c
|
||
|
do 130 i = 1, kev
|
||
|
c
|
||
|
c %--------------------------------------------%
|
||
|
c | Final check for splitting and deflation. |
|
||
|
c | Use a standard test as in the QR algorithm |
|
||
|
c | REFERENCE: LAPACK subroutine zlahqr. |
|
||
|
c | Note: Since the subdiagonals of the |
|
||
|
c | compressed H are nonnegative real numbers, |
|
||
|
c | we take advantage of this. |
|
||
|
c %--------------------------------------------%
|
||
|
c
|
||
|
tst1 = zabs1( h( i, i ) ) + zabs1( h( i+1, i+1 ) )
|
||
|
if( tst1 .eq. rzero )
|
||
|
& tst1 = zlanhs( '1', kev, h, ldh, workl )
|
||
|
if( dble( h( i+1,i ) ) .le. max( ulp*tst1, smlnum ) )
|
||
|
& h(i+1,i) = zero
|
||
|
130 continue
|
||
|
c
|
||
|
c %-------------------------------------------------%
|
||
|
c | Compute the (kev+1)-st column of (V*Q) and |
|
||
|
c | temporarily store the result in WORKD(N+1:2*N). |
|
||
|
c | This is needed in the residual update since we |
|
||
|
c | cannot GUARANTEE that the corresponding entry |
|
||
|
c | of H would be zero as in exact arithmetic. |
|
||
|
c %-------------------------------------------------%
|
||
|
c
|
||
|
if ( dble( h(kev+1,kev) ) .gt. rzero )
|
||
|
& call zgemv ('N', n, kplusp, one, v, ldv, q(1,kev+1), 1, zero,
|
||
|
& workd(n+1), 1)
|
||
|
c
|
||
|
c %----------------------------------------------------------%
|
||
|
c | Compute column 1 to kev of (V*Q) in backward order |
|
||
|
c | taking advantage of the upper Hessenberg structure of Q. |
|
||
|
c %----------------------------------------------------------%
|
||
|
c
|
||
|
do 140 i = 1, kev
|
||
|
call zgemv ('N', n, kplusp-i+1, one, v, ldv,
|
||
|
& q(1,kev-i+1), 1, zero, workd, 1)
|
||
|
call zcopy (n, workd, 1, v(1,kplusp-i+1), 1)
|
||
|
140 continue
|
||
|
c
|
||
|
c %-------------------------------------------------%
|
||
|
c | Move v(:,kplusp-kev+1:kplusp) into v(:,1:kev). |
|
||
|
c %-------------------------------------------------%
|
||
|
c
|
||
|
call zlacpy ('A', n, kev, v(1,kplusp-kev+1), ldv, v, ldv)
|
||
|
c
|
||
|
c %--------------------------------------------------------------%
|
||
|
c | Copy the (kev+1)-st column of (V*Q) in the appropriate place |
|
||
|
c %--------------------------------------------------------------%
|
||
|
c
|
||
|
if ( dble( h(kev+1,kev) ) .gt. rzero )
|
||
|
& call zcopy (n, workd(n+1), 1, v(1,kev+1), 1)
|
||
|
c
|
||
|
c %-------------------------------------%
|
||
|
c | Update the residual vector: |
|
||
|
c | r <- sigmak*r + betak*v(:,kev+1) |
|
||
|
c | where |
|
||
|
c | sigmak = (e_{kev+p}'*Q)*e_{kev} |
|
||
|
c | betak = e_{kev+1}'*H*e_{kev} |
|
||
|
c %-------------------------------------%
|
||
|
c
|
||
|
call zscal (n, q(kplusp,kev), resid, 1)
|
||
|
if ( dble( h(kev+1,kev) ) .gt. rzero )
|
||
|
& call zaxpy (n, h(kev+1,kev), v(1,kev+1), 1, resid, 1)
|
||
|
c
|
||
|
if (msglvl .gt. 1) then
|
||
|
call zvout (logfil, 1, q(kplusp,kev), ndigit,
|
||
|
& '_napps: sigmak = (e_{kev+p}^T*Q)*e_{kev}')
|
||
|
call zvout (logfil, 1, h(kev+1,kev), ndigit,
|
||
|
& '_napps: betak = e_{kev+1}^T*H*e_{kev}')
|
||
|
call ivout (logfil, 1, kev, ndigit,
|
||
|
& '_napps: Order of the final Hessenberg matrix ')
|
||
|
if (msglvl .gt. 2) then
|
||
|
call zmout (logfil, kev, kev, h, ldh, ndigit,
|
||
|
& '_napps: updated Hessenberg matrix H for next iteration')
|
||
|
end if
|
||
|
c
|
||
|
end if
|
||
|
c
|
||
|
9000 continue
|
||
|
call second (t1)
|
||
|
tcapps = tcapps + (t1 - t0)
|
||
|
c
|
||
|
return
|
||
|
c
|
||
|
c %---------------%
|
||
|
c | End of znapps |
|
||
|
c %---------------%
|
||
|
c
|
||
|
end
|