Projects/pyblm
Projects
/
pyblm
Archived
5
0
Fork 0
This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
pyblm/arpack/ARPACK/SRC/snaup2.f

836 lines
31 KiB
FortranFixed
Raw Normal View History

c\BeginDoc
c
c\Name: snaup2
c
c\Description:
c Intermediate level interface called by snaupd.
c
c\Usage:
c call snaup2
c ( IDO, BMAT, N, WHICH, NEV, NP, TOL, RESID, MODE, IUPD,
c ISHIFT, MXITER, V, LDV, H, LDH, RITZR, RITZI, BOUNDS,
c Q, LDQ, WORKL, IPNTR, WORKD, INFO )
c
c\Arguments
c
c IDO, BMAT, N, WHICH, NEV, TOL, RESID: same as defined in snaupd.
c MODE, ISHIFT, MXITER: see the definition of IPARAM in snaupd.
c
c NP Integer. (INPUT/OUTPUT)
c Contains the number of implicit shifts to apply during
c each Arnoldi iteration.
c If ISHIFT=1, NP is adjusted dynamically at each iteration
c to accelerate convergence and prevent stagnation.
c This is also roughly equal to the number of matrix-vector
c products (involving the operator OP) per Arnoldi iteration.
c The logic for adjusting is contained within the current
c subroutine.
c If ISHIFT=0, NP is the number of shifts the user needs
c to provide via reverse comunication. 0 < NP < NCV-NEV.
c NP may be less than NCV-NEV for two reasons. The first, is
c to keep complex conjugate pairs of "wanted" Ritz values
c together. The second, is that a leading block of the current
c upper Hessenberg matrix has split off and contains "unwanted"
c Ritz values.
c Upon termination of the IRA iteration, NP contains the number
c of "converged" wanted Ritz values.
c
c IUPD Integer. (INPUT)
c IUPD .EQ. 0: use explicit restart instead implicit update.
c IUPD .NE. 0: use implicit update.
c
c V Real N by (NEV+NP) array. (INPUT/OUTPUT)
c The Arnoldi basis vectors are returned in the first NEV
c columns of V.
c
c LDV Integer. (INPUT)
c Leading dimension of V exactly as declared in the calling
c program.
c
c H Real (NEV+NP) by (NEV+NP) array. (OUTPUT)
c H is used to store the generated upper Hessenberg matrix
c
c LDH Integer. (INPUT)
c Leading dimension of H exactly as declared in the calling
c program.
c
c RITZR, Real arrays of length NEV+NP. (OUTPUT)
c RITZI RITZR(1:NEV) (resp. RITZI(1:NEV)) contains the real (resp.
c imaginary) part of the computed Ritz values of OP.
c
c BOUNDS Real array of length NEV+NP. (OUTPUT)
c BOUNDS(1:NEV) contain the error bounds corresponding to
c the computed Ritz values.
c
c Q Real (NEV+NP) by (NEV+NP) array. (WORKSPACE)
c Private (replicated) work array used to accumulate the
c rotation in the shift application step.
c
c LDQ Integer. (INPUT)
c Leading dimension of Q exactly as declared in the calling
c program.
c
c WORKL Real work array of length at least
c (NEV+NP)**2 + 3*(NEV+NP). (INPUT/WORKSPACE)
c Private (replicated) array on each PE or array allocated on
c the front end. It is used in shifts calculation, shifts
c application and convergence checking.
c
c On exit, the last 3*(NEV+NP) locations of WORKL contain
c the Ritz values (real,imaginary) and associated Ritz
c estimates of the current Hessenberg matrix. They are
c listed in the same order as returned from sneigh.
c
c If ISHIFT .EQ. O and IDO .EQ. 3, the first 2*NP locations
c of WORKL are used in reverse communication to hold the user
c supplied shifts.
c
c IPNTR Integer array of length 3. (OUTPUT)
c Pointer to mark the starting locations in the WORKD for
c vectors used by the Arnoldi iteration.
c -------------------------------------------------------------
c IPNTR(1): pointer to the current operand vector X.
c IPNTR(2): pointer to the current result vector Y.
c IPNTR(3): pointer to the vector B * X when used in the
c shift-and-invert mode. X is the current operand.
c -------------------------------------------------------------
c
c WORKD Real work array of length 3*N. (WORKSPACE)
c Distributed array to be used in the basic Arnoldi iteration
c for reverse communication. The user should not use WORKD
c as temporary workspace during the iteration !!!!!!!!!!
c See Data Distribution Note in DNAUPD.
c
c INFO Integer. (INPUT/OUTPUT)
c If INFO .EQ. 0, a randomly initial residual vector is used.
c If INFO .NE. 0, RESID contains the initial residual vector,
c possibly from a previous run.
c Error flag on output.
c = 0: Normal return.
c = 1: Maximum number of iterations taken.
c All possible eigenvalues of OP has been found.
c NP returns the number of converged Ritz values.
c = 2: No shifts could be applied.
c = -8: Error return from LAPACK eigenvalue calculation;
c This should never happen.
c = -9: Starting vector is zero.
c = -9999: Could not build an Arnoldi factorization.
c Size that was built in returned in NP.
c
c\EndDoc
c
c-----------------------------------------------------------------------
c
c\BeginLib
c
c\Local variables:
c xxxxxx real
c
c\References:
c 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
c a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
c pp 357-385.
c 2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly
c Restarted Arnoldi Iteration", Rice University Technical Report
c TR95-13, Department of Computational and Applied Mathematics.
c
c\Routines called:
c sgetv0 ARPACK initial vector generation routine.
c snaitr ARPACK Arnoldi factorization routine.
c snapps ARPACK application of implicit shifts routine.
c snconv ARPACK convergence of Ritz values routine.
c sneigh ARPACK compute Ritz values and error bounds routine.
c sngets ARPACK reorder Ritz values and error bounds routine.
c ssortc ARPACK sorting routine.
c ivout ARPACK utility routine that prints integers.
c second ARPACK utility routine for timing.
c smout ARPACK utility routine that prints matrices
c svout ARPACK utility routine that prints vectors.
c slamch LAPACK routine that determines machine constants.
c slapy2 LAPACK routine to compute sqrt(x**2+y**2) carefully.
c scopy Level 1 BLAS that copies one vector to another .
c sdot Level 1 BLAS that computes the scalar product of two vectors.
c snrm2 Level 1 BLAS that computes the norm of a vector.
c sswap Level 1 BLAS that swaps two vectors.
c
c\Author
c Danny Sorensen Phuong Vu
c Richard Lehoucq CRPC / Rice University
c Dept. of Computational & Houston, Texas
c Applied Mathematics
c Rice University
c Houston, Texas
c
c\SCCS Information: @(#)
c FILE: naup2.F SID: 2.8 DATE OF SID: 10/17/00 RELEASE: 2
c
c\Remarks
c 1. None
c
c\EndLib
c
c-----------------------------------------------------------------------
c
subroutine snaup2
& ( ido, bmat, n, which, nev, np, tol, resid, mode, iupd,
& ishift, mxiter, v, ldv, h, ldh, ritzr, ritzi, bounds,
& q, ldq, workl, ipntr, workd, info )
c
c %----------------------------------------------------%
c | Include files for debugging and timing information |
c %----------------------------------------------------%
c
include 'debug.h'
include 'stat.h'
c
c %------------------%
c | Scalar Arguments |
c %------------------%
c
character bmat*1, which*2
integer ido, info, ishift, iupd, mode, ldh, ldq, ldv, mxiter,
& n, nev, np
Real
& tol
c
c %-----------------%
c | Array Arguments |
c %-----------------%
c
integer ipntr(13)
Real
& bounds(nev+np), h(ldh,nev+np), q(ldq,nev+np), resid(n),
& ritzi(nev+np), ritzr(nev+np), v(ldv,nev+np),
& workd(3*n), workl( (nev+np)*(nev+np+3) )
c
c %------------%
c | Parameters |
c %------------%
c
Real
& one, zero
parameter (one = 1.0E+0, zero = 0.0E+0)
c
c %---------------%
c | Local Scalars |
c %---------------%
c
character wprime*2
logical cnorm , getv0, initv, update, ushift
integer ierr , iter , j , kplusp, msglvl, nconv,
& nevbef, nev0 , np0 , nptemp, numcnv
Real
& rnorm , temp , eps23
save cnorm , getv0, initv, update, ushift,
& rnorm , iter , eps23, kplusp, msglvl, nconv ,
& nevbef, nev0 , np0 , numcnv
c
c %-----------------------%
c | Local array arguments |
c %-----------------------%
c
integer kp(4)
c
c %----------------------%
c | External Subroutines |
c %----------------------%
c
external scopy , sgetv0, snaitr, snconv, sneigh,
& sngets, snapps, svout , ivout , second
c
c %--------------------%
c | External Functions |
c %--------------------%
c
Real
& sdot, snrm2, slapy2, slamch
external sdot, snrm2, slapy2, slamch
c
c %---------------------%
c | Intrinsic Functions |
c %---------------------%
c
intrinsic min, max, abs, sqrt
c
c %-----------------------%
c | Executable Statements |
c %-----------------------%
c
if (ido .eq. 0) then
c
call second (t0)
c
msglvl = mnaup2
c
c %-------------------------------------%
c | Get the machine dependent constant. |
c %-------------------------------------%
c
eps23 = slamch('Epsilon-Machine')
eps23 = eps23**(2.0E+0 / 3.0E+0)
c
nev0 = nev
np0 = np
c
c %-------------------------------------%
c | kplusp is the bound on the largest |
c | Lanczos factorization built. |
c | nconv is the current number of |
c | "converged" eigenvlues. |
c | iter is the counter on the current |
c | iteration step. |
c %-------------------------------------%
c
kplusp = nev + np
nconv = 0
iter = 0
c
c %---------------------------------------%
c | Set flags for computing the first NEV |
c | steps of the Arnoldi factorization. |
c %---------------------------------------%
c
getv0 = .true.
update = .false.
ushift = .false.
cnorm = .false.
c
if (info .ne. 0) then
c
c %--------------------------------------------%
c | User provides the initial residual vector. |
c %--------------------------------------------%
c
initv = .true.
info = 0
else
initv = .false.
end if
end if
c
c %---------------------------------------------%
c | Get a possibly random starting vector and |
c | force it into the range of the operator OP. |
c %---------------------------------------------%
c
10 continue
c
if (getv0) then
call sgetv0 (ido, bmat, 1, initv, n, 1, v, ldv, resid, rnorm,
& ipntr, workd, info)
c
if (ido .ne. 99) go to 9000
c
if (rnorm .eq. zero) then
c
c %-----------------------------------------%
c | The initial vector is zero. Error exit. |
c %-----------------------------------------%
c
info = -9
go to 1100
end if
getv0 = .false.
ido = 0
end if
c
c %-----------------------------------%
c | Back from reverse communication : |
c | continue with update step |
c %-----------------------------------%
c
if (update) go to 20
c
c %-------------------------------------------%
c | Back from computing user specified shifts |
c %-------------------------------------------%
c
if (ushift) go to 50
c
c %-------------------------------------%
c | Back from computing residual norm |
c | at the end of the current iteration |
c %-------------------------------------%
c
if (cnorm) go to 100
c
c %----------------------------------------------------------%
c | Compute the first NEV steps of the Arnoldi factorization |
c %----------------------------------------------------------%
c
call snaitr (ido, bmat, n, 0, nev, mode, resid, rnorm, v, ldv,
& h, ldh, ipntr, workd, info)
c
c %---------------------------------------------------%
c | ido .ne. 99 implies use of reverse communication |
c | to compute operations involving OP and possibly B |
c %---------------------------------------------------%
c
if (ido .ne. 99) go to 9000
c
if (info .gt. 0) then
np = info
mxiter = iter
info = -9999
go to 1200
end if
c
c %--------------------------------------------------------------%
c | |
c | M A I N ARNOLDI I T E R A T I O N L O O P |
c | Each iteration implicitly restarts the Arnoldi |
c | factorization in place. |
c | |
c %--------------------------------------------------------------%
c
1000 continue
c
iter = iter + 1
c
if (msglvl .gt. 0) then
call ivout (logfil, 1, iter, ndigit,
& '_naup2: **** Start of major iteration number ****')
end if
c
c %-----------------------------------------------------------%
c | Compute NP additional steps of the Arnoldi factorization. |
c | Adjust NP since NEV might have been updated by last call |
c | to the shift application routine snapps. |
c %-----------------------------------------------------------%
c
np = kplusp - nev
c
if (msglvl .gt. 1) then
call ivout (logfil, 1, nev, ndigit,
& '_naup2: The length of the current Arnoldi factorization')
call ivout (logfil, 1, np, ndigit,
& '_naup2: Extend the Arnoldi factorization by')
end if
c
c %-----------------------------------------------------------%
c | Compute NP additional steps of the Arnoldi factorization. |
c %-----------------------------------------------------------%
c
ido = 0
20 continue
update = .true.
c
call snaitr (ido , bmat, n , nev, np , mode , resid,
& rnorm, v , ldv, h , ldh, ipntr, workd,
& info)
c
c %---------------------------------------------------%
c | ido .ne. 99 implies use of reverse communication |
c | to compute operations involving OP and possibly B |
c %---------------------------------------------------%
c
if (ido .ne. 99) go to 9000
c
if (info .gt. 0) then
np = info
mxiter = iter
info = -9999
go to 1200
end if
update = .false.
c
if (msglvl .gt. 1) then
call svout (logfil, 1, rnorm, ndigit,
& '_naup2: Corresponding B-norm of the residual')
end if
c
c %--------------------------------------------------------%
c | Compute the eigenvalues and corresponding error bounds |
c | of the current upper Hessenberg matrix. |
c %--------------------------------------------------------%
c
call sneigh (rnorm, kplusp, h, ldh, ritzr, ritzi, bounds,
& q, ldq, workl, ierr)
c
if (ierr .ne. 0) then
info = -8
go to 1200
end if
c
c %----------------------------------------------------%
c | Make a copy of eigenvalues and corresponding error |
c | bounds obtained from sneigh. |
c %----------------------------------------------------%
c
call scopy(kplusp, ritzr, 1, workl(kplusp**2+1), 1)
call scopy(kplusp, ritzi, 1, workl(kplusp**2+kplusp+1), 1)
call scopy(kplusp, bounds, 1, workl(kplusp**2+2*kplusp+1), 1)
c
c %---------------------------------------------------%
c | Select the wanted Ritz values and their bounds |
c | to be used in the convergence test. |
c | The wanted part of the spectrum and corresponding |
c | error bounds are in the last NEV loc. of RITZR, |
c | RITZI and BOUNDS respectively. The variables NEV |
c | and NP may be updated if the NEV-th wanted Ritz |
c | value has a non zero imaginary part. In this case |
c | NEV is increased by one and NP decreased by one. |
c | NOTE: The last two arguments of sngets are no |
c | longer used as of version 2.1. |
c %---------------------------------------------------%
c
nev = nev0
np = np0
numcnv = nev
call sngets (ishift, which, nev, np, ritzr, ritzi,
& bounds, workl, workl(np+1))
if (nev .eq. nev0+1) numcnv = nev0+1
c
c %-------------------%
c | Convergence test. |
c %-------------------%
c
call scopy (nev, bounds(np+1), 1, workl(2*np+1), 1)
call snconv (nev, ritzr(np+1), ritzi(np+1), workl(2*np+1),
& tol, nconv)
c
if (msglvl .gt. 2) then
kp(1) = nev
kp(2) = np
kp(3) = numcnv
kp(4) = nconv
call ivout (logfil, 4, kp, ndigit,
& '_naup2: NEV, NP, NUMCNV, NCONV are')
call svout (logfil, kplusp, ritzr, ndigit,
& '_naup2: Real part of the eigenvalues of H')
call svout (logfil, kplusp, ritzi, ndigit,
& '_naup2: Imaginary part of the eigenvalues of H')
call svout (logfil, kplusp, bounds, ndigit,
& '_naup2: Ritz estimates of the current NCV Ritz values')
end if
c
c %---------------------------------------------------------%
c | Count the number of unwanted Ritz values that have zero |
c | Ritz estimates. If any Ritz estimates are equal to zero |
c | then a leading block of H of order equal to at least |
c | the number of Ritz values with zero Ritz estimates has |
c | split off. None of these Ritz values may be removed by |
c | shifting. Decrease NP the number of shifts to apply. If |
c | no shifts may be applied, then prepare to exit |
c %---------------------------------------------------------%
c
nptemp = np
do 30 j=1, nptemp
if (bounds(j) .eq. zero) then
np = np - 1
nev = nev + 1
end if
30 continue
c
if ( (nconv .ge. numcnv) .or.
& (iter .gt. mxiter) .or.
& (np .eq. 0) ) then
c
if (msglvl .gt. 4) then
call svout(logfil, kplusp, workl(kplusp**2+1), ndigit,
& '_naup2: Real part of the eig computed by _neigh:')
call svout(logfil, kplusp, workl(kplusp**2+kplusp+1),
& ndigit,
& '_naup2: Imag part of the eig computed by _neigh:')
call svout(logfil, kplusp, workl(kplusp**2+kplusp*2+1),
& ndigit,
& '_naup2: Ritz eistmates computed by _neigh:')
end if
c
c %------------------------------------------------%
c | Prepare to exit. Put the converged Ritz values |
c | and corresponding bounds in RITZ(1:NCONV) and |
c | BOUNDS(1:NCONV) respectively. Then sort. Be |
c | careful when NCONV > NP |
c %------------------------------------------------%
c
c %------------------------------------------%
c | Use h( 3,1 ) as storage to communicate |
c | rnorm to _neupd if needed |
c %------------------------------------------%
h(3,1) = rnorm
c
c %----------------------------------------------%
c | To be consistent with sngets, we first do a |
c | pre-processing sort in order to keep complex |
c | conjugate pairs together. This is similar |
c | to the pre-processing sort used in sngets |
c | except that the sort is done in the opposite |
c | order. |
c %----------------------------------------------%
c
if (which .eq. 'LM') wprime = 'SR'
if (which .eq. 'SM') wprime = 'LR'
if (which .eq. 'LR') wprime = 'SM'
if (which .eq. 'SR') wprime = 'LM'
if (which .eq. 'LI') wprime = 'SM'
if (which .eq. 'SI') wprime = 'LM'
c
call ssortc (wprime, .true., kplusp, ritzr, ritzi, bounds)
c
c %----------------------------------------------%
c | Now sort Ritz values so that converged Ritz |
c | values appear within the first NEV locations |
c | of ritzr, ritzi and bounds, and the most |
c | desired one appears at the front. |
c %----------------------------------------------%
c
if (which .eq. 'LM') wprime = 'SM'
if (which .eq. 'SM') wprime = 'LM'
if (which .eq. 'LR') wprime = 'SR'
if (which .eq. 'SR') wprime = 'LR'
if (which .eq. 'LI') wprime = 'SI'
if (which .eq. 'SI') wprime = 'LI'
c
call ssortc(wprime, .true., kplusp, ritzr, ritzi, bounds)
c
c %--------------------------------------------------%
c | Scale the Ritz estimate of each Ritz value |
c | by 1 / max(eps23,magnitude of the Ritz value). |
c %--------------------------------------------------%
c
do 35 j = 1, numcnv
temp = max(eps23,slapy2(ritzr(j),
& ritzi(j)))
bounds(j) = bounds(j)/temp
35 continue
c
c %----------------------------------------------------%
c | Sort the Ritz values according to the scaled Ritz |
c | esitmates. This will push all the converged ones |
c | towards the front of ritzr, ritzi, bounds |
c | (in the case when NCONV < NEV.) |
c %----------------------------------------------------%
c
wprime = 'LR'
call ssortc(wprime, .true., numcnv, bounds, ritzr, ritzi)
c
c %----------------------------------------------%
c | Scale the Ritz estimate back to its original |
c | value. |
c %----------------------------------------------%
c
do 40 j = 1, numcnv
temp = max(eps23, slapy2(ritzr(j),
& ritzi(j)))
bounds(j) = bounds(j)*temp
40 continue
c
c %------------------------------------------------%
c | Sort the converged Ritz values again so that |
c | the "threshold" value appears at the front of |
c | ritzr, ritzi and bound. |
c %------------------------------------------------%
c
call ssortc(which, .true., nconv, ritzr, ritzi, bounds)
c
if (msglvl .gt. 1) then
call svout (logfil, kplusp, ritzr, ndigit,
& '_naup2: Sorted real part of the eigenvalues')
call svout (logfil, kplusp, ritzi, ndigit,
& '_naup2: Sorted imaginary part of the eigenvalues')
call svout (logfil, kplusp, bounds, ndigit,
& '_naup2: Sorted ritz estimates.')
end if
c
c %------------------------------------%
c | Max iterations have been exceeded. |
c %------------------------------------%
c
if (iter .gt. mxiter .and. nconv .lt. numcnv) info = 1
c
c %---------------------%
c | No shifts to apply. |
c %---------------------%
c
if (np .eq. 0 .and. nconv .lt. numcnv) info = 2
c
np = nconv
go to 1100
c
else if ( (nconv .lt. numcnv) .and. (ishift .eq. 1) ) then
c
c %-------------------------------------------------%
c | Do not have all the requested eigenvalues yet. |
c | To prevent possible stagnation, adjust the size |
c | of NEV. |
c %-------------------------------------------------%
c
nevbef = nev
nev = nev + min(nconv, np/2)
if (nev .eq. 1 .and. kplusp .ge. 6) then
nev = kplusp / 2
else if (nev .eq. 1 .and. kplusp .gt. 3) then
nev = 2
end if
np = kplusp - nev
c
c %---------------------------------------%
c | If the size of NEV was just increased |
c | resort the eigenvalues. |
c %---------------------------------------%
c
if (nevbef .lt. nev)
& call sngets (ishift, which, nev, np, ritzr, ritzi,
& bounds, workl, workl(np+1))
c
end if
c
if (msglvl .gt. 0) then
call ivout (logfil, 1, nconv, ndigit,
& '_naup2: no. of "converged" Ritz values at this iter.')
if (msglvl .gt. 1) then
kp(1) = nev
kp(2) = np
call ivout (logfil, 2, kp, ndigit,
& '_naup2: NEV and NP are')
call svout (logfil, nev, ritzr(np+1), ndigit,
& '_naup2: "wanted" Ritz values -- real part')
call svout (logfil, nev, ritzi(np+1), ndigit,
& '_naup2: "wanted" Ritz values -- imag part')
call svout (logfil, nev, bounds(np+1), ndigit,
& '_naup2: Ritz estimates of the "wanted" values ')
end if
end if
c
if (ishift .eq. 0) then
c
c %-------------------------------------------------------%
c | User specified shifts: reverse comminucation to |
c | compute the shifts. They are returned in the first |
c | 2*NP locations of WORKL. |
c %-------------------------------------------------------%
c
ushift = .true.
ido = 3
go to 9000
end if
c
50 continue
c
c %------------------------------------%
c | Back from reverse communication; |
c | User specified shifts are returned |
c | in WORKL(1:2*NP) |
c %------------------------------------%
c
ushift = .false.
c
if ( ishift .eq. 0 ) then
c
c %----------------------------------%
c | Move the NP shifts from WORKL to |
c | RITZR, RITZI to free up WORKL |
c | for non-exact shift case. |
c %----------------------------------%
c
call scopy (np, workl, 1, ritzr, 1)
call scopy (np, workl(np+1), 1, ritzi, 1)
end if
c
if (msglvl .gt. 2) then
call ivout (logfil, 1, np, ndigit,
& '_naup2: The number of shifts to apply ')
call svout (logfil, np, ritzr, ndigit,
& '_naup2: Real part of the shifts')
call svout (logfil, np, ritzi, ndigit,
& '_naup2: Imaginary part of the shifts')
if ( ishift .eq. 1 )
& call svout (logfil, np, bounds, ndigit,
& '_naup2: Ritz estimates of the shifts')
end if
c
c %---------------------------------------------------------%
c | Apply the NP implicit shifts by QR bulge chasing. |
c | Each shift is applied to the whole upper Hessenberg |
c | matrix H. |
c | The first 2*N locations of WORKD are used as workspace. |
c %---------------------------------------------------------%
c
call snapps (n, nev, np, ritzr, ritzi, v, ldv,
& h, ldh, resid, q, ldq, workl, workd)
c
c %---------------------------------------------%
c | Compute the B-norm of the updated residual. |
c | Keep B*RESID in WORKD(1:N) to be used in |
c | the first step of the next call to snaitr. |
c %---------------------------------------------%
c
cnorm = .true.
call second (t2)
if (bmat .eq. 'G') then
nbx = nbx + 1
call scopy (n, resid, 1, workd(n+1), 1)
ipntr(1) = n + 1
ipntr(2) = 1
ido = 2
c
c %----------------------------------%
c | Exit in order to compute B*RESID |
c %----------------------------------%
c
go to 9000
else if (bmat .eq. 'I') then
call scopy (n, resid, 1, workd, 1)
end if
c
100 continue
c
c %----------------------------------%
c | Back from reverse communication; |
c | WORKD(1:N) := B*RESID |
c %----------------------------------%
c
if (bmat .eq. 'G') then
call second (t3)
tmvbx = tmvbx + (t3 - t2)
end if
c
if (bmat .eq. 'G') then
rnorm = sdot (n, resid, 1, workd, 1)
rnorm = sqrt(abs(rnorm))
else if (bmat .eq. 'I') then
rnorm = snrm2(n, resid, 1)
end if
cnorm = .false.
c
if (msglvl .gt. 2) then
call svout (logfil, 1, rnorm, ndigit,
& '_naup2: B-norm of residual for compressed factorization')
call smout (logfil, nev, nev, h, ldh, ndigit,
& '_naup2: Compressed upper Hessenberg matrix H')
end if
c
go to 1000
c
c %---------------------------------------------------------------%
c | |
c | E N D O F M A I N I T E R A T I O N L O O P |
c | |
c %---------------------------------------------------------------%
c
1100 continue
c
mxiter = iter
nev = numcnv
c
1200 continue
ido = 99
c
c %------------%
c | Error Exit |
c %------------%
c
call second (t1)
tnaup2 = t1 - t0
c
9000 continue
c
c %---------------%
c | End of snaup2 |
c %---------------%
c
return
end