Projects/pyblm
Projects
/
pyblm
Archived
5
0
Fork 0
This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
pyblm/setup.py

53 lines
1.7 KiB
Python
Raw Permalink Normal View History

2007-10-10 14:19:21 +02:00
#!/usr/bin/env python
#from distutils.core import setup
short_description=\
"""Library routines for performing L-shaped matrix decompositon.
"""
long_description=\
"""Library for performing L-shaped low rank models. An L shaped decomposition
is a a situation where a matrices X (n, p), Y (n, o) and Z (k, p) are
aproximated by low rank bilinear models (X ~ TP', Y~ TQ', Z ~ OW') in a way
that common patterns between the X-Y, and X-Z are identified.
"""
classifiers = """\
Development Status :: 4 - Beta
Environment :: Console
Intended Audience :: Developers
Intended Audience :: Science/Research
License :: OSI Approved :: BSD License
2007-10-10 14:19:21 +02:00
Operating System :: OS Independent
Programming Language :: Python
Topic :: Scientific/Engineering
Topic :: Software Development :: Libraries :: Python Modules
"""
from pyblm import __version__
2007-10-10 14:19:21 +02:00
def configuration(parent_package='',top_path=None):
from numpy.distutils.misc_util import Configuration
config = Configuration('', parent_package, top_path)
2007-10-10 14:19:21 +02:00
config.add_data_dir('tests')
#config.add_data_files(['lplslib',('COPYING','README')])
config.add_subpackage('pyblm')
config.add_subpackage('arpack')
2007-10-10 14:19:21 +02:00
return config
if __name__ == "__main__":
from numpy.distutils.core import setup
config = configuration(top_path='').todict()
config['author'] = 'Arnar Flatberg'
config['author_email'] = 'arnar.flatberg at gmail.com'
# config['short_description'] = short_description
2007-10-10 14:19:21 +02:00
config['long_description'] = long_description
config['url'] = 'https://dev.pvv.org/projects/pyblm'
config['version'] = __version__
config['license'] = 'BSD'
2007-10-10 14:19:21 +02:00
config['platforms'] = ['Linux']
config['classifiers'] = filter(None, classifiers.split('\n'))
setup(**config)