This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
laydi/fluents/dataset.py

491 lines
15 KiB
Python

from scipy import ndarray,atleast_2d,asarray,intersect1d,zeros
from scipy import sort as array_sort
from itertools import izip
import shelve
import copy
import re
class Dataset:
"""The Dataset base class.
A Dataset is an n-way array with defined string identifiers across
all dimensions.
example of use:
---
dim_name_rows = 'rows'
names_rows = ('row_a','row_b')
ids_1 = [dim_name_rows, names_rows]
dim_name_cols = 'cols'
names_cols = ('col_a','col_b','col_c','col_d')
ids_2 = [dim_name_cols, names_cols]
Array_X = rand(2,4)
data = Dataset(Array_X,(ids_1,ids_2),name="Testing")
dim_names = [dim for dim in data]
column_identifiers = [id for id in data['cols'].keys()]
column_index = [index for index in data['cols'].values()]
'cols' in data -> True
---
data = Dataset(rand(10,20)) (generates dims and ids (no links))
"""
def __init__(self, array, identifiers=None, name='Unnamed dataset'):
self._dims = [] #existing dimensions in this dataset
self._map = {} # internal mapping for dataset: identifier <--> index
self._name = name
self._identifiers = identifiers
self._type = 'n'
if len(array.shape)==1:
array = atleast_2d(asarray(array))
# vectors are column vectors
if array.shape[0]==1:
array = array.T
self.shape = array.shape
if identifiers!=None:
identifier_shape = [len(i[1]) for i in identifiers]
if len(identifier_shape)!=len(self.shape):
raise ValueError, "Identifier list length must equal array dims"
for ni, na in zip(identifier_shape, self.shape):
if ni!=na:
raise ValueError, "identifier-array mismatch in %s: (idents: %s, array: %s)" %(self._name, ni, na)
self._set_identifiers(identifiers, self._all_dims)
else:
self._identifiers = self._create_identifiers(self.shape, self._all_dims)
self._set_identifiers(self._identifiers, self._all_dims)
self._array = array
def __iter__(self):
"""Returns an iterator over dimensions of dataset."""
return self._dims.__iter__()
def __contains__(self,dim):
"""Returns True if dim is a dimension name in dataset."""
# return self._dims.__contains__(dim)
return self._map.__contains__(dim)
def __len__(self):
"""Returns the number of dimensions in the dataset"""
return len(self._map)
def __getitem__(self,dim):
"""Return the identifers along the dimension dim."""
return self._map[dim]
def _create_identifiers(self,shape,all_dims):
"""Creates dimension names and identifier names, and returns
identifiers."""
dim_names = ['rows','cols']
ids = []
for axis,n in enumerate(shape):
if axis<2:
dim_suggestion = dim_names[axis]
else:
dim_suggestion = 'dim'
dim_suggestion = self._suggest_dim_name(dim_suggestion,all_dims)
identifier_creation = [str(axis) + "_" + i for i in map(str,range(n))]
ids.append((dim_suggestion,identifier_creation))
all_dims.add(dim_suggestion)
return ids
def _set_identifiers(self, identifiers, all_dims):
"""Creates internal mapping of identifiers structure."""
for dim, ids in identifiers:
pos_map = ReverseDict()
if dim not in self._dims:
self._dims.append(dim)
all_dims.add(dim)
else:
raise ValueError, "Dimension names must be unique whitin dataset"
for pos, id in enumerate(ids):
pos_map[id] = pos
self._map[dim] = pos_map
def _suggest_dim_name(self,dim_name,all_dims):
"""Suggests a unique name for dim and returns it"""
c = 0
new_name = dim_name
while new_name in all_dims:
new_name = dim_name + "_" + str(c)
c+=1
return new_name
def asarray(self):
"""Returns the numeric array (data) of dataset"""
return self._array
def add_array(self, array):
"""Adds array as an ArrayType object.
A one-dim array is transformed to a two-dim array (row-vector)
"""
if self.shape!=array.shape:
raise ValueError, "Input array must be of similar dimensions as dataset"
self._array = atleast_2d(asarray(array))
def get_name(self):
"""Returns dataset name"""
return self._name
def get_all_dims(self):
"""Returns all dimensions in project"""
return self._all_dims
def get_dim_name(self, axis=None):
"""Returns dim name for an axis, if no axis is provided it
returns a list of dims"""
if type(axis)==int:
return self._dims[axis]
else:
return [dim for dim in self]
def get_identifiers(self, dim, indices=None,sorted=False):
"""Returns identifiers along dim, sorted by position (index)
is optional.
You can optionally provide a list/ndarray of indices to get
only the identifiers of a given position.
Identifiers are the unique names (strings) for a variable in a
given dim. Index (Indices) are the Identifiers position in a
matrix in a given dim.
"""
if indices!=None:
if len(indices)==0:# if empty list or empty array
return []
if indices != None:
# be sure to match intersection
#indices = intersect1d(self.get_indices(dim),indices)
ids = [self._map[dim].reverse[i] for i in indices]
else:
if sorted==True:
ids = [self._map[dim].reverse[i] for i in array_sort(self._map[dim].values())]
else:
ids = self._map[dim].keys()
return ids
def get_indices(self, dim, idents=None):
"""Returns indices for identifiers along dimension.
You can optionally provide a list of identifiers to retrieve a
index subset.
Identifiers are the unique names (strings) for a variable in a
given dim. Index (Indices) are the Identifiers position in a
matrix in a given dim. If none of the input identifiers are
found an empty index is returned
"""
if not isinstance(idents, list) and not isinstance(idents, set):
raise ValueError("idents needs to be a list/set got: %s" %type(idents))
if idents==None:
index = array_sort(self._map[dim].values())
else:
index = [self._map[dim][key]
for key in idents if self._map[dim].has_key(key)]
return asarray(index)
def copy(self):
""" Returns deepcopy of dataset.
"""
return copy.deepcopy(self)
class CategoryDataset(Dataset):
"""The category dataset class.
A dataset for representing class information as binary
matrices (0/1-matrices).
There is support for using a less memory demanding, and
fast intersection look-ups by representing the binary matrix as a
dictionary in each dimension.
Always has linked dimension in first dim:
ex matrix:
. go_term1 go_term2 ...
gene_1
gene_2
gene_3
.
.
.
"""
def __init__(self, array, identifiers=None, name='C'):
Dataset.__init__(self, array, identifiers=identifiers, name=name)
self.has_dictlists = False
self._type = 'c'
def as_dict_lists(self):
"""Returns data as dict of indices along first dim.
ex: data['gene_id'] = ['map0030','map0010', ...]
"""
data={}
for name, ind in self._map[self.get_dim_name(0)].items():
data[name] = self.get_identifiers(self.get_dim_name(1),
list(self._array[ind,:].nonzero()))
self._dictlists = data
self.has_dictlists = True
return data
def as_selections(self):
"""Returns data as a list of Selection objects.
"""
ret_list = []
for cat_name, ind in self._map[self.get_dim_name(1)].items():
ids = self.get_identifiers(self.get_dim_name(0),
self._array[:,ind].nonzero()[0])
selection = Selection(cat_name)
selection.select(self.get_dim_name(0), ids)
ret_list.append(selection)
return ret_list
class GraphDataset(Dataset):
"""The graph dataset class.
A dataset class for representing graphs using an (weighted)
adjacency matrix
(restricted to square symmetric matrices)
If the library NetworkX is installed, there is support for
representing the graph as a NetworkX.Graph, or NetworkX.XGraph structure.
"""
def __init__(self, array=None, identifiers=None, shape=None, all_dims=[],**kwds):
Dataset.__init__(self, array=array, identifiers=identifiers, name='A')
self._graph = None
self._type = 'g'
def asnetworkx(self, nx_type='graph'):
dim = self.get_dim_name()[0]
ids = self.get_identifiers(dim, sorted=True)
adj_mat = self.asarray()
G = self._graph_from_adj_matrix(adj_mat, labels=ids)
self._graph = G
return G
def _graph_from_adj_matrix(self, A, labels=None):
"""Creates a networkx graph class from adjacency
(possibly weighted) matrix and ordered labels.
nx_type = ['graph',['xgraph']]
labels = None, results in string-numbered labels
"""
try:
import networkx as nx
except:
print "Failed in import of NetworkX"
return
m, n = A.shape# adjacency matrix must be of type that evals to true/false for neigbours
if m!=n:
raise IOError, "Adjacency matrix must be square"
if A[A[:,0].nonzero()[0][0],0]==1: #unweighted graph
G = nx.Graph()
else:
G = nx.XGraph()
if labels==None: # if labels not provided mark vertices with numbers
labels = [str(i) for i in range(m)]
for nbrs, head in izip(A, labels):
for i, nbr in enumerate(nbrs):
if nbr:
tail = labels[i]
if type(G)==nx.XGraph:
G.add_edge(head, tail, nbr)
else:
G.add_edge(head, tail)
return G
Dataset._all_dims = set()
class ReverseDict(dict):
"""
A dictionary which can lookup values by key, and keys by value.
All values and keys must be hashable, and unique.
d = ReverseDict((['a',1],['b',2]))
print d['a'] --> 1
print d.reverse[1] --> 'a'
"""
def __init__(self, *args, **kw):
dict.__init__(self, *args, **kw)
self.reverse = dict([[v,k] for k,v in self.items()])
def __setitem__(self, key, value):
dict.__setitem__(self, key, value)
try:
self.reverse[value] = key
except:
self.reverse = {value:key}
def to_file(filepath,dataset,name=None):
"""Write dataset to file. A file may contain multiple datasets.
append to file by using option mode='a'
"""
if not name:
name = dataset._name
data = shelve.open(filepath, flag='c', protocol=2)
if data: #we have an append
names = data.keys()
if name in names:
print "Data with name: %s overwritten" %dataset._name
sub_data = {'array':dataset._array,
'idents':dataset._identifiers,
'type':dataset._type}
data[name] = sub_data
data.close()
def from_file(filepath):
"""Read dataset(s) from file """
data = shelve.open(filepath, flag='r')
out_data = []
for name in data.keys():
sub_data = data[name]
if sub_data['type']=='c':
out_data.append(CategoryDataset(sub_data['array'], identifiers=sub_data['idents'], name=name))
elif sub_data['type']=='g':
out_data.append(GraphDataset(sub_data['array'], identifiers=sub_data['idents'], name=name))
else:
out_data.append(Dataset(sub_data['array'], identifiers=sub_data['idents'], name=name))
return out_data
class Selection(dict):
"""Handles selected identifiers along each dimension of a dataset"""
def __init__(self, title='Unnamed Selecton'):
self.title = title
def __getitem__(self, key):
if not self.has_key(key):
return None
return dict.__getitem__(self, key)
def dims(self):
return self.keys()
def axis_len(self, axis):
if self._selection.has_key(axis):
return len(self._selection[axis])
return 0
def select(self, axis, labels):
self[axis] = labels
def write_ftsv(fd, ds):
# Write header information
if isinstance(ds, CategoryDataset):
type = 'category'
elif isinstance(ds, GraphDataset):
type = 'network'
elif isinstance(ds, Dataset):
type = 'dataset'
else:
raise Exception("Unknown object")
print >> fd, "# type: %s" % type
for dim in ds.get_dim_name():
print >> fd, "# dimension: %s" % dim,
for id in ds.get_identifiers(dim, None, True):
print >> fd, id,
print >> fd
print >> fd, "# name: %s" % ds.get_name()
print >> fd
# Write data
m = ds.asarray()
y, x = m.shape
for j in range(y):
for i in range(x):
print >> fd, "%s\t" % m[j, i],
print >> fd
def read_ftsv(fd):
split_re = re.compile('^#\s*(\w+)\s*:\s*(.+)')
dimensions = []
identifiers = {}
type = 'dataset'
name = 'Unnamed dataset'
graphtype = 'graph'
# Read header lines from file.
line = fd.readline()
while line:
m = split_re.match(line)
if m:
key, val = m.groups()
# The line is on the form;
# dimension: dimname id1 id2 id3 ...
if key == 'dimension':
values = [v.strip() for v in val.split(' ')]
dimensions.append(values[0])
identifiers[values[0]] = values[1:]
# Read type of dataset.
# Should be dataset, category, or network
elif key == 'type':
type = val
elif key == 'name':
name = val
elif key == 'graphtype':
graphtype = val
else:
break
line = fd.readline()
# Dimensions in the form [(dim1, [id1, id2, id3 ..) ...]
dims = [(x, identifiers[x]) for x in dimensions]
dim_lengths = [len(identifiers[x]) for x in dimensions]
# Create matrix
if type == 'category':
matrix = zeros(dim_lengths, dtype=bool)
elif type == 'network':
matrix = zeros(dim_lengths)
else:
matrix = zeros(dim_lengths)
line = fd.readline()
y = 0
while line:
values = line.split()
for x, v in enumerate(values):
matrix[y,x] = float(v)
y += 1
line = fd.readline()
# Create dataset of specified type
if type == 'category':
ds = CategoryDataset(matrix, dims, name)
elif type == 'network':
ds = GraphDataset(matrix, dims, name)
else:
ds = Dataset(matrix, dims, name)
return ds