Projects/laydi
Projects
/
laydi
Archived
7
0
Fork 0
This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
laydi/fluents/dataset.py

733 lines
24 KiB
Python

from scipy import ndarray,atleast_2d,asarray,intersect1d,zeros,empty,sparse,\
where
from scipy import sort as array_sort
from itertools import izip
import shelve
import copy
import re
class Dataset(object):
"""The Dataset base class.
A Dataset is an n-way array with defined string identifiers across
all dimensions.
example of use:
---
dim_name_rows = 'rows'
names_rows = ('row_a','row_b')
ids_1 = [dim_name_rows, names_rows]
dim_name_cols = 'cols'
names_cols = ('col_a','col_b','col_c','col_d')
ids_2 = [dim_name_cols, names_cols]
Array_X = rand(2,4)
data = Dataset(Array_X,(ids_1,ids_2),name="Testing")
dim_names = [dim for dim in data]
column_identifiers = [id for id in data['cols'].keys()]
column_index = [index for index in data['cols'].values()]
'cols' in data -> True
---
data = Dataset(rand(10,20)) (generates dims and ids (no links))
"""
def __init__(self, array, identifiers=None, name='Unnamed dataset'):
self._dims = [] #existing dimensions in this dataset
self._map = {} # internal mapping for dataset: identifier <--> index
self._name = name
self._identifiers = identifiers
if not isinstance(array, sparse.spmatrix):
array = atleast_2d(asarray(array))
# vector are column (array)
if array.shape[0] == 1:
array = array.T
self.shape = array.shape
if identifiers != None:
self._validate_identifiers(identifiers)
self._set_identifiers(identifiers, self._all_dims)
else:
self._identifiers = self._create_identifiers(self.shape, self._all_dims)
self._set_identifiers(self._identifiers, self._all_dims)
self._array = array
def __iter__(self):
"""Returns an iterator over dimensions of dataset."""
return self._dims.__iter__()
def __contains__(self,dim):
"""Returns True if dim is a dimension name in dataset."""
# return self._dims.__contains__(dim)
return self._map.__contains__(dim)
def __len__(self):
"""Returns the number of dimensions in the dataset"""
return len(self._map)
def __getitem__(self,dim):
"""Return the identifers along the dimension dim."""
return self._map[dim]
def _create_identifiers(self, shape, all_dims):
"""Creates dimension names and identifier names, and returns
identifiers."""
dim_names = ['rows','cols']
ids = []
for axis, n in enumerate(shape):
if axis < 2:
dim_suggestion = dim_names[axis]
else:
dim_suggestion = 'dim'
dim_suggestion = self._suggest_dim_name(dim_suggestion, all_dims)
identifier_creation = [str(axis) + "_" + i for i in map(str, range(n))]
ids.append((dim_suggestion, identifier_creation))
all_dims.add(dim_suggestion)
return ids
def _set_identifiers(self, identifiers, all_dims):
"""Creates internal mapping of identifiers structure."""
for dim, ids in identifiers:
pos_map = ReverseDict()
if dim not in self._dims:
self._dims.append(dim)
all_dims.add(dim)
else:
raise ValueError, "Dimension names must be unique whitin dataset"
for pos, id in enumerate(ids):
pos_map[id] = pos
self._map[dim] = pos_map
def _suggest_dim_name(self,dim_name,all_dims):
"""Suggests a unique name for dim and returns it"""
c = 0
new_name = dim_name
while new_name in all_dims:
new_name = dim_name + "_" + str(c)
c += 1
return new_name
def asarray(self):
"""Returns the numeric array (data) of dataset"""
if isinstance(self._array, sparse.spmatrix):
return self._array.toarray()
return self._array
def set_array(self, array):
"""Adds array as an ArrayType object.
A one-dim array is transformed to a two-dim array (row-vector)
"""
if not isinstance(array, type(self._array)):
raise ValueError("Input array of type: %s does not match existing array type: %s") %(type(array), type(self._array))
if self.shape != array.shape:
raise ValueError, "Input array must be of similar dimensions as dataset"
self._array = atleast_2d(asarray(array))
def get_name(self):
"""Returns dataset name"""
return self._name
def get_all_dims(self):
"""Returns all dimensions in project"""
return self._all_dims
def get_dim_name(self, axis=None):
"""Returns dim name for an axis, if no axis is provided it
returns a list of dims"""
if type(axis) == int:
return self._dims[axis]
else:
return [dim for dim in self._dims]
def common_dims(self, ds):
"""Returns a list of the common dimensions in the two datasets."""
dims = self.get_dim_name()
ds_dims = ds.get_dim_name()
return [d for d in dims if d in ds_dims]
def get_identifiers(self, dim, indices=None, sorted=False):
"""Returns identifiers along dim, sorted by position (index)
is optional.
You can optionally provide a list/ndarray of indices to get
only the identifiers of a given position.
Identifiers are the unique names (strings) for a variable in a
given dim. Index (Indices) are the Identifiers position in a
matrix in a given dim.
"""
if indices != None:
if len(indices) == 0:# if empty list or empty array
return []
if indices != None:
# be sure to match intersection
#indices = intersect1d(self.get_indices(dim),indices)
ids = [self._map[dim].reverse[i] for i in indices]
else:
if sorted == True:
ids = [self._map[dim].reverse[i] for i in array_sort(self._map[dim].values())]
else:
ids = self._map[dim].keys()
return ids
def get_indices(self, dim, idents=None):
"""Returns indices for identifiers along dimension.
You can optionally provide a list of identifiers to retrieve a
index subset.
Identifiers are the unique names (strings) for a variable in a
given dim. Index (Indices) are the Identifiers position in a
matrix in a given dim. If none of the input identifiers are
found an empty index is returned
"""
if not isinstance(idents, list) and not isinstance(idents, set):
raise ValueError("idents needs to be a list/set got: %s" %type(idents))
if idents == None:
index = array_sort(self._map[dim].values())
else:
index = [self._map[dim][key]
for key in idents if self._map[dim].has_key(key)]
return asarray(index)
def existing_identifiers(self, dim, idents):
"""Filters a list of identifiers to find those that are present in the
dataset.
The most common use of this function is to get a list of
identifiers who correspond one to one with the list of indices produced
when get_indices is given an identifier list. That is
ds.get_indices(dim, idents) and ds.exisiting_identifiers(dim, idents)
will have the same order.
@param dim: A dimension present in the dataset.
@param idents: A list of identifiers along the given dimension.
@return: A list of identifiers in the same order as idents, but
without elements not present in the dataset.
"""
if not isinstance(idents, list) and not isinstance(idents, set):
raise ValueError("idents needs to be a list/set got: %s" %type(idents))
return [key for key in idents if self._map[dim].has_key(key)]
def copy(self):
""" Returns deepcopy of dataset.
"""
return copy.deepcopy(self)
def transpose(self):
"""Returns a copy of transpose of a dataset.
As for the moment: only support for 2D-arrays.
"""
assert(len(self.shape) == 2)
ds = self.copy()
ds._array = ds._array.T
ds._dims.reverse()
ds.shape = ds._array.shape
return ds
def _validate_identifiers(self, identifiers):
for dim_name, ids in identifiers:
if len(set(ids)) != len(ids):
raise ValueError("Identifiers not unique in : %s" %dim_name)
identifier_shape = [len(i[1]) for i in identifiers]
if len(identifier_shape) != len(self.shape):
raise ValueError("Identifier list length must equal array dims")
for ni, na in zip(identifier_shape, self.shape):
if ni != na:
raise ValueError, "Identifier-array mismatch: %s: (idents: %s, array: %s)" %(self._name, ni, na)
class CategoryDataset(Dataset):
"""The category dataset class.
A dataset for representing class information as binary
matrices (0/1-matrices).
There is support for using a less memory demanding, sparse format. The
prefered (default) format for a category dataset is the compressed sparse row
format (csr)
Always has linked dimension in first dim:
ex matrix:
. go_term1 go_term2 ...
gene_1
gene_2
gene_3
.
.
.
"""
def __init__(self, array, identifiers=None, name='C'):
Dataset.__init__(self, array, identifiers=identifiers, name=name)
def as_spmatrix(self):
if isinstance(self._array, sparse.spmatrix):
return self._array
else:
arr = self.asarray()
return sparse.csr_matrix(arr.astype('i'))
def to_spmatrix(self):
if isinstance(self._array, sparse.spmatrix):
self._array = self._array.tocsr()
else:
self._array = sparse.scr_matrix(self._array)
def as_dictlists(self):
"""Returns data as dict of identifiers along first dim.
ex: data['gene_1'] = ['map0030','map0010', ...]
fixme: Deprecated?
"""
data = {}
for name, ind in self._map[self.get_dim_name(0)].items():
if isinstance(self._array, ndarray):
indices = self._array[ind,:].nonzero()[0]
elif isinstance(self._array, sparse.spmatrix):
if not isinstance(self._array, sparse.csr_matrix):
array = self._array.tocsr()
else:
array = self._array
indices = array[ind,:].indices
if len(indices) == 0: # should we allow categories with no members?
continue
data[name] = self.get_identifiers(self.get_dim_name(1), indices)
self._dictlists = data
return data
def as_selections(self):
"""Returns data as a list of Selection objects.
The list of selections is not ordered (sorted) by any means.
"""
ret_list = []
for cat_name, ind in self._map[self.get_dim_name(1)].items():
if isinstance(self._array, sparse.spmatrix):
if not isinstance(self._array, sparse.csc_matrix):
self._array = self._array.tocsc()
indices = self._array[:,ind].indices
else:
indices = self._array[:,ind].nonzero()[0]
if len(indices) == 0:
continue
ids = self.get_identifiers(self.get_dim_name(0), indices)
selection = Selection(cat_name)
selection.select(self.get_dim_name(0), ids)
ret_list.append(selection)
return ret_list
class GraphDataset(Dataset):
"""The graph dataset class.
A dataset class for representing graphs. The constructor may use an
incidence matrix (possibly sparse) or (if networkx installed) a
networkx.(X)Graph structure.
If the networkx library is installed, there is support for
representing the graph as a networkx.Graph, or networkx.XGraph structure.
"""
def __init__(self, input, identifiers=None, name='A', nodepos = None):
if isinstance(input, sparse.spmatrix):
arr = input
else:
try:
arr = asarray(input)
except:
raise ValueError("Could not identify input")
Dataset.__init__(self, array=arr, identifiers=identifiers, name=name)
self._graph = None
self.nodepos = nodepos
def as_spmatrix(self):
if isinstance(self._array, sparse.spmatrix):
return self._array
else:
arr = self.asarray()
return sparse.csr_matrix(arr.astype('i'))
def to_spmatrix(self):
if isinstance(self._array, sparse.spmatrix):
self._array = self._array.tocsr()
else:
self._array = sparse.scr_matrix(self._array)
def asnetworkx(self):
if self._graph != None:
return self._graph
dim0, dim1 = self.get_dim_name()
node_ids = self.get_identifiers(dim0, sorted=True)
edge_ids = self.get_identifiers(dim1, sorted=True)
G = self._graph_from_incidence_matrix(self._array, node_ids=node_ids, edge_ids=edge_ids)
self._graph = G
return G
def from_networkx(cls, G, node_dim, edge_dim, sp_format=True):
"""Create graph dataset from networkx graph.
When G is a Graph/Digraph edge identifiers will be created,
else (XGraoh/XDigraph) it is assumed that edge attributes are
the edge identifiers.
"""
import networkx as nx
n = G.number_of_nodes()
m = G.number_of_edges()
if isinstance(G, nx.DiGraph):
G = nx.XDiGraph(G)
G = G.to_directed()
elif isinstance(G, nx.Graph):
G = nx.XGraph(G)
edge_ids = [e[2] for e in G.edges()]
node_ids = map(str, G.nodes())
n2ind = {}
for ind, node in enumerate(node_ids):
n2ind[node] = ind
if sp_format:
I = sparse.lil_matrix((n, m))
else:
I = zeros((m, n), dtype='i')
for i, (h, t, eid) in enumerate(G.edges()):
if eid != None:
edge_ids[i] = eid
else:
edge_ids[i] = 'e_' + str(i)
hind = n2ind[str(h)]
tind = n2ind[str(t)]
I[hind, i] = 1
if G.is_directed():
I[tind, i] = -1
else:
I[tind, i] = 1
idents = [[node_dim, node_ids], [edge_dim, edge_ids]]
if G.name != '':
name = G.name
else:
name = 'A'
ds = GraphDataset(I, idents, name)
return ds
from_networkx = classmethod(from_networkx)
def _incidence2adjacency(self, I):
"""Incidence to adjacency matrix.
I*I.T - eye(n)?
"""
raise NotImplementedError
def _graph_from_incidence_matrix(self, I, node_ids, edge_ids):
"""Creates a networkx graph class from incidence
(possibly weighted) matrix and ordered labels.
labels = None, results in string-numbered labels
"""
try:
import networkx as nx
except:
print "Failed in import of NetworkX"
return None
m, n = I.shape
assert(m == len(node_ids))
assert(n == len(edge_ids))
weights = []
directed = False
G = nx.XDiGraph(name=self._name)
if isinstance(I, sparse.spmatrix):
I = I.tocsr()
for ename, col in izip(edge_ids, I.T):
if isinstance(I, sparse.spmatrix):
node_ind = col.indices
w1, w2 = col.data
else:
node_ind = where(col != 0)[0]
w1, w2 = col[node_ind]
node1 = node_ids[node_ind[0]]
node2 = node_ids[node_ind[1]]
if w1 < 0: # w1 is tail
directed = True
assert(w2 > 0 and (w1 + w2) == 0)
G.add_edge(node2, node1, ename)
weights.append(w2)
else: #w2 is tail or graph is undirected
assert(w1 > 0)
if w2 < 0:
directed = True
G.add_edge(node1, node2, ename)
weights.append(w1)
if not directed:
G = G.to_undirected()
return G, asarray(weights)
Dataset._all_dims = set()
class ReverseDict(dict):
"""A dictionary which can lookup values by key, and keys by value.
All values and keys must be hashable, and unique.
example:
>>d = ReverseDict((['a',1],['b',2]))
>>print d['a'] --> 1
>>print d.reverse[1] --> 'a'
"""
def __init__(self, *args, **kw):
dict.__init__(self, *args, **kw)
self.reverse = dict([[v, k] for k, v in self.items()])
def __setitem__(self, key, value):
dict.__setitem__(self, key, value)
try:
self.reverse[value] = key
except:
self.reverse = {value:key}
class Selection(dict):
"""Handles selected identifiers along each dimension of a dataset"""
def __init__(self, title='Unnamed Selecton'):
self.title = title
def __getitem__(self, key):
if not self.has_key(key):
return None
return dict.__getitem__(self, key)
def dims(self):
return self.keys()
def axis_len(self, axis):
if self._selection.has_key(axis):
return len(self._selection[axis])
return 0
def select(self, axis, labels):
self[axis] = labels
def write_ftsv(fd, ds, decimals=7, sep='\t', fmt=None, sp_format=True):
"""Writes a dataset in fluents tab separated values (ftsv) form.
@param fd: An open file descriptor to the output file.
@param ds: The dataset to be written.
@param decimals: Number of decimals, only supported for dataset.
@param fmt: String formating
The function handles datasets of these classes:
Dataset, CategoryDataset and GraphDataset
"""
opened = False
if isinstance(fd, str):
fd = open(fd, 'w')
opened = True
# Write header information
if isinstance(ds, CategoryDataset):
type = 'category'
if fmt == None:
fmt = '%d'
elif isinstance(ds, GraphDataset):
type = 'network'
if fmt == None:
fmt = '%d'
elif isinstance(ds, Dataset):
type = 'dataset'
if fmt == None:
fmt = '%%.%df' % decimals
else:
fmt = '%%.%d' %decimals + fmt
else:
raise Exception("Unknown object type")
fd.write('# type: %s' %type + '\n')
for dim in ds.get_dim_name():
fd.write("# dimension: %s" % dim)
for ident in ds.get_identifiers(dim, sorted=True):
fd.write(" " + ident)
fd.write("\n")
fd.write("# name: %s" % ds.get_name() + '\n')
# xy-node-positions
if ds.nodepos != None:
fd.write("# nodepos:")
node_dim = ds.get_dim_name(0)
for ident in ds.get_identifiers(node_dim, sorted=True):
fd.write(" %s,%s" %ds.nodepos[ident])
fd.write("\n")
# Write data
if hasattr(ds, "as_spmatrix") and sp_format == True:
m = ds.as_spmatrix()
else:
m = ds.asarray()
if isinstance(m, sparse.spmatrix):
_write_sparse_elements(fd, m, fmt, sep)
else:
_write_elements(fd, m, fmt, sep)
if opened:
fd.close()
def read_ftsv(fd, sep=None):
"""Read a dataset in fluents tab separated values (ftsv) form and return it.
@param fd: An open file descriptor.
@return: A Dataset, CategoryDataset or GraphDataset depending on the information
read.
"""
opened = False
if isinstance(fd, str):
fd = open(fd)
opened = True
split_re = re.compile('^#\s*(\w+)\s*:\s*(.+)')
dimensions = []
identifiers = {}
type = 'dataset'
name = 'Unnamed dataset'
sp_format = False
nodepos = None
# graphtype = 'graph'
# Read header lines from file.
line = fd.readline()
while line:
m = split_re.match(line)
if m:
key, val = m.groups()
# The line is on the form;
# dimension: dimname id1 id2 id3 ...
if key == 'dimension':
values = [v.strip() for v in val.split(' ')]
dimensions.append(values[0])
identifiers[values[0]] = values[1:]
# Read type of dataset.
# Should be dataset, category, or network
elif key == 'type':
type = val
elif key == 'name':
name = val
# storage format
# if sp_format is True then use coordinate triplets
elif key == 'sp_format':
if val in ['False', 'false', '0', 'F', 'f',]:
sp_format = False
elif val in ['True', 'true', '1', 'T', 't']:
sp_format = True
else:
raise ValueError("sp_format: %s not valid " %sp_format)
elif key == 'nodepos':
node_dim = dimensions[0]
idents = identifiers[node_dim]
nodepos = {}
xys = val.split(" ")
for node_id, xy in zip(idents, xys):
x, y = map(float, xy.split(","))
nodepos[node_id] = (x, y)
else:
break
line = fd.readline()
# Dimensions in the form [(dim1, [id1, id2, id3 ..) ...]
dims = [(x, identifiers[x]) for x in dimensions]
dim_lengths = [len(identifiers[x]) for x in dimensions]
# Create matrix and assign element reader
if type == 'category':
if sp_format:
matrix = sparse.lil_matrix(dim_lengths)
else:
matrix = empty(dim_lengths, dtype='i')
else:
if sp_format:
matrix = sparse.lil_matrix(dim_lengths)
else:
matrix = empty(dim_lengths)
if sp_format:
matrix = _read_sparse_elements(fd, matrix)
else:
matrix = _read_elements(fd, matrix)
# Create dataset of specified type
if type == 'category':
ds = CategoryDataset(matrix, dims, name)
elif type == 'network':
ds = GraphDataset(matrix, dims, name=name, nodepos=nodepos)
else:
ds = Dataset(matrix, dims, name)
if opened:
fd.close()
return ds
def _write_sparse_elements(fd, arr, fmt='%d', sep=None):
""" Sparse coordinate format."""
fd.write('# sp_format: True\n\n')
fmt = '%d %d ' + fmt + '\n'
csr = arr.tocsr()
for ii in xrange(csr.size):
ir, ic = csr.rowcol(ii)
data = csr.getdata(ii)
fd.write(fmt % (ir, ic, data))
def _write_elements(fd, arr, fmt='%f', sep='\t'):
"""Standard value separated format."""
fmt = fmt + sep
fd.write('\n')
y, x = arr.shape
for j in range(y):
for i in range(x):
fd.write(fmt %arr[j, i])
fd.write('\n')
def _read_elements(fd, arr, sep=None):
line = fd.readline()
i = 0
while line:
values = line.split(sep)
for j, val in enumerate(values):
arr[i,j] = float(val)
i += 1
line = fd.readline()
return arr
def _read_sparse_elements(fd, arr, sep=None):
line = fd.readline()
while line:
i, j, val = line.split()
arr[int(i),int(j)] = float(val)
line = fd.readline()
return arr.tocsr()