Projects/laydi
Projects
/
laydi
Archived
7
0
Fork 0
This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
laydi/fluents/lib/engines.py

764 lines
21 KiB
Python

"""Module contain algorithms for low-rank models.
There is almost no typechecking of any kind here, just focus on speed
"""
import math
from scipy.linalg import svd,inv
from scipy import dot,empty,eye,newaxis,zeros,sqrt,diag,\
apply_along_axis,mean,ones,randn,empty_like,outer,r_,c_,\
rand,sum,cumsum,matrix, expand_dims,minimum,where,arange
has_sym=True
try:
from symeig import symeig
except:
has_sym = False
def pca(a, aopt,scale='scores',mode='normal',center_axis=0):
""" Principal Component Analysis.
Performs PCA on given matrix and returns results in a dictionary.
:Parameters:
a : array
Data measurement matrix, (samples x variables)
aopt : int
Number of components to use, aopt<=min(samples, variables)
:Returns:
results : dict
keys -- values, T -- scores, P -- loadings, E -- residuals,
lev --leverages, ssq -- sum of squares, expvar -- cumulative
explained variance, aopt -- number of components used
:OtherParameters:
mode : str
Amount of info retained, ('fast', 'normal', 'detailed')
center_axis : int
Center along given axis. If neg.: no centering (-inf,..., matrix modes)
:SeeAlso:
- pcr : other blm
- pls : other blm
- lpls : other blm
Notes
-----
Uses kernel speed-up if m>>n or m<<n.
If residuals turn rank deficient, a lower number of component than given
in input will be used. The number of components used is given in
results-dict.
Examples
--------
>>> import scipy,engines
>>> a=scipy.asarray([[1,2,3],[2,4,5]])
>>> dat=engines.pca(a, 2)
>>> dat['expvarx']
array([0.,99.8561562, 100.])
"""
m, n = a.shape
assert(aopt<=min(m,n))
if center_axis>=0:
a = a - expand_dims(a.mean(center_axis), center_axis)
if m>(n+100) or n>(m+100):
u, s, v = esvd(a, amax=None) # fixme:amax option need to work with expl.var
print s[:10]
else:
u, s, vt = svd(a, 0)
v = vt.T
e = s**2
tol = 1e-10
eff_rank = sum(s>s[0]*tol)
aopt = minimum(aopt, eff_rank)
T = u*s
s = s[:aopt]
T = T[:,:aopt]
P = v[:,:aopt]
if scale=='loads':
T = T/s
P = P*s
if mode == 'fast':
return {'T':T, 'P':P, 'aopt':aopt}
if mode=='detailed':
E = empty((aopt, m, n))
ssq = []
lev = []
for ai in range(aopt):
E[ai,:,:] = a - dot(T[:,:ai+1], P[:,:ai+1].T)
ssq.append([(E[ai,:,:]**2).sum(0), (E[ai,:,:]**2).sum(1)])
if scale=='loads':
lev.append([((s*T)**2).sum(1), (P**2).sum(1)])
else:
lev.append([(T**2).sum(1), ((s*P)**2).sum(1)])
else:
# residuals
E = a - dot(T, P.T)
SEP = E**2
ssq = [SEP.sum(0), SEP.sum(1)]
# leverages
if scale=='loads':
lev = [(1./m)+(T**2).sum(1), (1./n)+((P/s)**2).sum(1)]
else:
lev = [(1./m)+((T/s)**2).sum(1), (1./n)+(P**2).sum(1)]
# variances
expvarx = r_[0, 100*e.cumsum()/e.sum()][:aopt+1]
return {'T':T, 'P':P, 'E':E, 'expvarx':expvarx, 'levx':lev, 'ssqx':ssq, 'aopt':aopt}
def pcr(a, b, aopt, scale='scores',mode='normal',center_axis=0):
""" Principal Component Regression.
Performs PCR on given matrix and returns results in a dictionary.
:Parameters:
a : array
Data measurement matrix, (samples x variables)
b : array
Data response matrix, (samples x responses)
aopt : int
Number of components to use, aopt<=min(samples, variables)
:Returns:
results : dict
keys -- values, T -- scores, P -- loadings, E -- residuals,
levx -- leverages, ssqx -- sum of squares, expvarx -- cumulative
explained variance, aopt -- number of components used
:OtherParameters:
mode : str
Amount of info retained, ('fast', 'normal', 'detailed')
center_axis : int
Center along given axis. If neg.: no centering (-inf,..., matrix modes)
:SeeAlso:
- pca : other blm
- pls : other blm
- lpls : other blm
Notes
-----
Uses kernel speed-up if m>>n or m<<n.
If residuals turn rank deficient, a lower number of component than given
in input will be used. The number of components used is given in results-dict.
Examples
--------
>>> import scipy,engines
>>> a=scipy.asarray([[1,2,3],[2,4,5]])
>>> b=scipy.asarray([[1,1],[2,3]])
>>> dat=engines.pcr(a, 2)
>>> dat['expvarx']
array([0.,99.8561562, 100.])
"""
k, l = m_shape(b)
if center_axis>=0:
b = b - expand_dims(b.mean(center_axis), center_axis)
dat = pca(a, aopt=aopt, scale=scale, mode=mode, center_axis=center_axis)
T = dat['T']
weights = apply_along_axis(vnorm, 0, T)**2
if scale=='loads':
Q = dot(b.T, T*weights)
else:
Q = dot(b.T, T/weights)
if mode=='fast':
dat.update({'Q':Q})
return dat
if mode=='detailed':
F = empty((aopt, k, l))
for i in range(aopt):
F[i,:,:] = b - dot(T[:,:i+1], Q[:,:i+1].T)
else:
F = b - dot(T, Q.T)
expvary = r_[0, 100*((T**2).sum(0)*(Q**2).sum(0)/(b**2).sum()).cumsum()[:aopt]]
#fixme: Y-var leverages
dat.update({'Q':Q, 'F':F, 'expvary':expvary})
return dat
def pls(a, b, aopt=2, scale='scores', mode='normal', center_axis=-1, ab=None):
"""Partial Least Squares Regression.
Performs PLS on given matrix and returns results in a dictionary.
:Parameters:
a : array
Data measurement matrix, (samples x variables)
b : array
Data response matrix, (samples x responses)
aopt : int
Number of components to use, aopt<=min(samples, variables)
:Returns:
results : dict
keys -- values, T -- scores, P -- loadings, E -- residuals,
levx -- leverages, ssqx -- sum of squares, expvarx -- cumulative
explained variance of descriptors, expvary -- cumulative explained
variance of responses, aopt -- number of components used
:OtherParameters:
mode : str
Amount of info retained, ('fast', 'normal', 'detailed')
center_axis : int
Center along given axis. If neg.: no centering (-inf,..., matrix modes)
:SeeAlso:
- pca : other blm
- pcr : other blm
- lpls : other blm
Notes
-----
Uses kernel speed-up if m>>n or m<<n.
If residuals turn rank deficient, a lower number of component than given
in input will be used. The number of components used is given in results-dict.
Examples
--------
>>> import scipy,engines
>>> a=scipy.asarray([[1,2,3],[2,4,5]])
>>> b=scipy.asarray([[1,1],[2,3]])
>>> dat=engines.pls(a, b, 2)
>>> dat['expvarx']
array([0.,99.8561562, 100.])
"""
m, n = m_shape(a)
if ab!=None:
mm, l = m_shape(ab)
assert(m==mm)
else:
k, l = m_shape(b)
if center_axis>=0:
a = a - expand_dims(a.mean(center_axis), center_axis)
b = b - expand_dims(b.mean(center_axis), center_axis)
W = empty((n, aopt))
P = empty((n, aopt))
R = empty((n, aopt))
Q = empty((l, aopt))
T = empty((m, aopt))
B = empty((aopt, n, l))
if ab==None:
ab = dot(a.T, b)
for i in range(aopt):
if ab.shape[1]==1: #pls 1
w = ab.reshape(n, l)
w = w/vnorm(w)
elif n<l: # more yvars than xvars
if has_sym:
s, u = symeig(dot(ab, ab.T),range=[l,l],overwrite=True)
else:
u, s, vh = svd(dot(ab, ab.T))
w = u[:,0]
else: # standard wide xdata
if has_sym:
s, q = symeig(dot(ab.T, ab),range=[l,l],overwrite=True)
else:
q, s, vh = svd(dot(ab.T, ab))
q = q[:,:1]
w = dot(ab, q)
w = w/vnorm(w)
r = w.copy()
if i>0:
for j in range(0, i, 1):
r = r - dot(P[:,j].T, w)*R[:,j][:,newaxis]
print vnorm(r)
t = dot(a, r)
tt = vnorm(t)**2
p = dot(a.T, t)/tt
q = dot(r.T, ab).T/tt
ab = ab - dot(p, q.T)*tt
T[:,i] = t.ravel()
W[:,i] = w.ravel()
if mode=='fast' and i==aopt-1:
if scale=='loads':
tnorm = apply_along_axis(vnorm, 0, T)
T = T/tnorm
W = W*tnorm
return {'T':T, 'W':W}
P[:,i] = p.ravel()
R[:,i] = r.ravel()
Q[:,i] = q.ravel()
B[i] = dot(R[:,:i+1], Q[:,:i+1].T)
if mode=='detailed':
E = empty((aopt, m, n))
F = empty((aopt, k, l))
for i in range(1, aopt+1, 1):
E[i-1] = a - dot(T[:,:i], P[:,:i].T)
F[i-1] = b - dot(T[:,:i], Q[:,:i].T)
else:
E = a - dot(T[:,:aopt], P[:,:aopt].T)
F = b - dot(T[:,:aopt], Q[:,:aopt].T)
if scale=='loads':
tnorm = apply_along_axis(vnorm, 0, T)
T = T/tnorm
W = W*tnorm
Q = Q*tnorm
P = P*tnorm
return {'B':B, 'Q':Q, 'P':P, 'T':T, 'W':W, 'R':R, 'E':E, 'F':F}
def w_simpls(aat, b, aopt):
""" Simpls for wide matrices.
Fast pls for crossval, used in calc rmsep for wide X
There is no P or W. T is normalised
"""
bb = b.copy()
m, m = aat.shape
U = empty((m, aopt)) # W
T = empty((m, aopt))
H = empty((m, aopt)) # R
PROJ = empty((m, aopt)) # P?
for i in range(aopt):
q, s, vh = svd(dot(dot(b.T, aat), b), full_matrices=0)
u = dot(b, q[:,:1]) #y-factor scores
U[:,i] = u.ravel()
t = dot(aat, u)
t = t/vnorm(t)
T[:,i] = t.ravel()
h = dot(aat, t) #score-weights
H[:,i] = h.ravel()
PROJ[:,:i+1] = dot(T[:,:i+1], inv(dot(T[:,:i+1].T, H[:,:i+1])) )
if i<aopt:
b = b - dot(PROJ[:,:i+1], dot(H[:,:i+1].T,b) )
C = dot(bb.T, T)
return {'T':T, 'U':U, 'Q':C, 'H':H}
def w_pls(aat, b, aopt):
""" Pls for wide matrices.
Fast pls for crossval, used in calc rmsep for wide X
There is no P or W. T is normalised
aat = centered kernel matrix
b = centered y
"""
bb = b.copy()
k, l = m_shape(b)
m, m = m_shape(aat)
U = empty((m, aopt)) # W
T = empty((m, aopt))
R = empty((m, aopt)) # R
PROJ = empty((m, aopt)) # P?
for i in range(aopt):
if has_sym:
s, q = symeig(dot(dot(b.T, aat), b), range=(l,l),overwrite=True)
else:
q, s, vh = svd(dot(dot(b.T, aat), b), full_matrices=0)
q = q[:,:1]
u = dot(b , q) #y-factor scores
U[:,i] = u.ravel()
t = dot(aat, u)
print "Norm of t: %s" %vnorm(t)
print "s: %s" %s
t = t/vnorm(t)
T[:,i] = t.ravel()
r = dot(aat, t)#score-weights
#r = r/vnorm(r)
print "Norm R: %s" %vnorm(r)
R[:,i] = r.ravel()
PROJ[:,: i+1] = dot(T[:,:i+1], inv(dot(T[:,:i+1].T, R[:,:i+1])) )
if i<aopt:
b = b - dot(PROJ[:,:i+1], dot(R[:,:i+1].T, b) )
C = dot(bb.T, T)
return {'T':T, 'U':U, 'Q':C, 'R':R}
def bridge(a, b, aopt, scale='scores', mode='normal', r=0):
"""Undeflated Ridged svd(X'Y)
"""
m, n = m_shape(a)
k, l = m_shape(b)
u, s, vt = svd(b, full_matrices=0)
g0 = dot(u*s, u.T)
g = (1 - r)*g0 + r*eye(m)
ag = dot(a.T, g)
u, s, vt = svd(ag, full_matrices=0)
W = u[:,:aopt]
K = vt[:aopt,:].T
T = dot(a, W)
tnorm = apply_along_axis(vnorm, 0, T) # norm of T-columns
if mode == 'fast':
if scale=='loads':
T = T/tnorm
W = W*tnorm
return {'T':T, 'W':W}
U = dot(g0, K) #fixme check this
Q = dot(b.T, dot(T, inv(dot(T.T, T)) ))
B = zeros((aopt, n, l), dtype='f')
for i in range(aopt):
B[i] = dot(W[:,:i+1], Q[:,:i+1].T)
if mode == 'detailed':
E = empty((aopt, m, n))
F = empty((aopt, k, l))
for i in range(aopt):
E[i] = a - dot(T[:,:i+1], W[:,:i+1].T)
F[i] = b - dot(a, B[i])
else: #normal
F = b - dot(a, B[-1])
E = a - dot(T, W.T)
# leverages
# fixme: probably need an orthogonal basis for row-space leverage
# T (scores) are not orthogonal
# Using a qr decomp to get an orthonormal basis for row-space
#Tq = qr(T)[0]
#s_lev,v_lev = leverage(aopt,Tq,W)
# explained variance
#var_x, exp_var_x = variances(a,T,W)
#qnorm = apply_along_axis(norm, 0, Q)
#var_y, exp_var_y = variances(b,U,Q/qnorm)
if scale=='loads':
T = T/tnorm
W = W*tnorm
Q = Q*tnorm
return {'B':B, 'W':W, 'T':T, 'Q':Q, 'E':E, 'F':F, 'U':U, 'P':W}
def nipals_lpls(X, Y, Z, a_max, alpha=.7, mean_ctr=[2, 0, 1], mode='normal', scale='scores', verbose=False):
""" L-shaped Partial Least Sqaures Regression by the nipals algorithm.
(X!Z)->Y
:input:
X : data matrix (m, n)
Y : data matrix (m, l)
Z : data matrix (n, o)
:output:
T : X-scores
W : X-weights/Z-weights
P : X-loadings
Q : Y-loadings
U : X-Y relation
L : Z-scores
K : Z-loads
B : Regression coefficients X->Y
b0: Regression coefficient intercept
evx : X-explained variance
evy : Y-explained variance
evz : Z-explained variance
:Notes:
"""
if mean_ctr!=None:
xctr, yctr, zctr = mean_ctr
X, mnX = center(X, xctr)
Y, mnY = center(Y, xctr)
Z, mnZ = center(Z, zctr)
varX = pow(X, 2).sum()
varY = pow(Y, 2).sum()
varZ = pow(Z, 2).sum()
m, n = X.shape
k, l = Y.shape
u, o = Z.shape
# initialize
U = empty((k, a_max))
Q = empty((l, a_max))
T = empty((m, a_max))
W = empty((n, a_max))
P = empty((n, a_max))
K = empty((o, a_max))
L = empty((u, a_max))
B = empty((a_max, n, l))
b0 = empty((a_max, m, l))
var_x = empty((a_max,))
var_y = empty((a_max,))
var_z = empty((a_max,))
for a in range(a_max):
if verbose:
print "\n Working on comp. %s" %a
u = Y[:,:1]
diff = 1
MAX_ITER = 200
lim = 1e-16
niter = 0
while (diff>lim and niter<MAX_ITER):
niter += 1
u1 = u.copy()
w = dot(X.T, u)
w = w/sqrt(dot(w.T, w))
l = dot(Z, w)
k = dot(Z.T, l)
k = k/sqrt(dot(k.T, k))
w = alpha*k + (1-alpha)*w
w = w/sqrt(dot(w.T, w))
t = dot(X, w)
c = dot(Y.T, t)
c = c/sqrt(dot(c.T, c))
u = dot(Y, c)
diff = abs(u1 - u).max()
if verbose:
print "Converged after %s iterations" %niter
tt = dot(t.T, t)
p = dot(X.T, t)/tt
q = dot(Y.T, t)/tt
l = dot(Z, w)
U[:,a] = u.ravel()
W[:,a] = w.ravel()
P[:,a] = p.ravel()
T[:,a] = t.ravel()
Q[:,a] = q.ravel()
L[:,a] = l.ravel()
K[:,a] = k.ravel()
X = X - dot(t, p.T)
Y = Y - dot(t, q.T)
Z = (Z.T - dot(w, l.T)).T
var_x[a] = pow(X, 2).sum()
var_y[a] = pow(Y, 2).sum()
var_z[a] = pow(Z, 2).sum()
B[a] = dot(dot(W[:,:a+1], inv(dot(P[:,:a+1].T, W[:,:a+1]))), Q[:,:a+1].T)
b0[a] = mnY - dot(mnX, B[a])
# variance explained
evx = 100.0*(1 - var_x/varX)
evy = 100.0*(1 - var_y/varY)
evz = 100.0*(1 - var_z/varZ)
if scale=='loads':
tnorm = apply_along_axis(vnorm, 0, T)
T = T/tnorm
W = W*tnorm
Q = Q*tnorm
knorm = apply_along_axis(vnorm, 0, K)
L = L*knorm
K = K/knorm
return {'T':T, 'W':W, 'P':P, 'Q':Q, 'U':U, 'L':L, 'K':K, 'B':B, 'b0':b0, 'evx':evx, 'evy':evy, 'evz':evz}
def nipals_pls(X, Y, a_max, alpha=.7, ax_center=0, mode='normal', scale='scores', verbose=False):
"""Partial Least Sqaures Regression by the nipals algorithm.
(X!Z)->Y
:input:
X : data matrix (m, n)
Y : data matrix (m, l)
:output:
T : X-scores
W : X-weights/Z-weights
P : X-loadings
Q : Y-loadings
U : X-Y relation
B : Regression coefficients X->Y
b0: Regression coefficient intercept
evx : X-explained variance
evy : Y-explained variance
evz : Z-explained variance
:Notes:
"""
if ax_center>=0:
mn_x = expand_dims(X.mean(ax_center), ax_center)
mn_y = expand_dims(Y.mean(ax_center), ax_center)
X = X - mn_x
Y = Y - mn_y
varX = pow(X, 2).sum()
varY = pow(Y, 2).sum()
m, n = X.shape
k, l = Y.shape
# initialize
U = empty((k, a_max))
Q = empty((l, a_max))
T = empty((m, a_max))
W = empty((n, a_max))
P = empty((n, a_max))
B = empty((a_max, n, l))
b0 = empty((a_max, m, l))
var_x = empty((a_max,))
var_y = empty((a_max,))
t1 = X[:,:1]
for a in range(a_max):
if verbose:
print "\n Working on comp. %s" %a
u = Y[:,:1]
diff = 1
MAX_ITER = 100
lim = 1e-16
niter = 0
while (diff>lim and niter<MAX_ITER):
niter += 1
#u1 = u.copy()
w = dot(X.T, u)
w = w/sqrt(dot(w.T, w))
#l = dot(Z, w)
#k = dot(Z.T, l)
#k = k/sqrt(dot(k.T, k))
#w = alpha*k + (1-alpha)*w
#w = w/sqrt(dot(w.T, w))
t = dot(X, w)
q = dot(Y.T, t)
q = q/sqrt(dot(q.T, q))
u = dot(Y, q)
diff = vnorm(t1 - t)
t1 = t.copy()
if verbose:
print "Converged after %s iterations" %niter
#tt = dot(t.T, t)
#p = dot(X.T, t)/tt
#q = dot(Y.T, t)/tt
#l = dot(Z, w)
p = dot(X.T, t)/dot(t.T, t)
p_norm = vnorm(p)
t = t*p_norm
w = w*p_norm
p = p/p_norm
U[:,a] = u.ravel()
W[:,a] = w.ravel()
P[:,a] = p.ravel()
T[:,a] = t.ravel()
Q[:,a] = q.ravel()
X = X - dot(t, p.T)
Y = Y - dot(t, q.T)
var_x[a] = pow(X, 2).sum()
var_y[a] = pow(Y, 2).sum()
B[a] = dot(dot(W[:,:a+1], inv(dot(P[:,:a+1].T, W[:,:a+1]))), Q[:,:a+1].T)
b0[a] = mn_y - dot(mn_x, B[a])
# variance explained
evx = 100.0*(1 - var_x/varX)
evy = 100.0*(1 - var_y/varY)
if scale=='loads':
tnorm = apply_along_axis(vnorm, 0, T)
T = T/tnorm
W = W*tnorm
Q = Q*tnorm
return {'T':T, 'W':W, 'P':P, 'Q':Q, 'U':U, 'B':B, 'b0':b0, 'evx':evx, 'evy':evy}
########### Helper routines #########
def m_shape(array):
return matrix(array).shape
def esvd(data, amax=None):
"""SVD with the option of economy sized calculation
Calculate subspaces of X'X or XX' depending on the shape
of the matrix.
Good for extreme fat or thin matrices
:notes:
Numpy supports this by setting full_matrices=0
"""
m, n = data.shape
if m>=n:
kernel = dot(data.T, data)
if has_sym:
if amax==None:
amax = n
pcrange = None
else:
pcrange = [n-amax, n]
print "symm>n"
s, v = symeig(kernel, range=pcrange, overwrite=True)
s = s[::-1]
v = v[:,::-1]
else:
u, s, vt = svd(kernel)
v = vt.T
s = sqrt(s)
u = dot(data, v)/s
else:
kernel = dot(data, data.T)
if has_sym:
if amax==None:
amax = m
pcrange = None
else:
pcrange = [m-amax, m]
print "sym (m<n)"
s, u = symeig(kernel, range=pcrange, overwrite=True)
s = s[::-1]
u = u[:,::-1]
else:
u, s, vt = svd(kernel)
s = sqrt(s)
v = dot(data.T, u)/s
print s[:2]
return u, s, v
def vnorm(x):
# assume column arrays (or vectors)
return math.sqrt(dot(x.T, x))
def center(a, axis):
# 0 = col center, 1 = row center, 2 = double center
# -1 = nothing
if axis==-1:
mn = zeros((a.shape[1],))
elif axis==0:
mn = a.mean(0)
elif axis==1:
mn = a.mean(1)[:,newaxis]
elif axis==2:
mn = a.mean(0) + a.mean(1)[:,newaxis] - a.mean()
else:
raise IOError("input error: axis must be in [-1,0,1,2]")
return a - mn, mn
def scale(a, axis):
if axis==-1:
sc = zeros((a.shape[1],))
elif axis==0:
sc = a.std(0)
elif axis==1:
sc = a.std(1)[:,newaxis]
else:
raise IOError("input error: axis must be in [-1,0,1]")
return a - sc, sc