Projects/laydi
Projects
/
laydi
Archived
7
0
Fork 0
This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
laydi/fluents/lib/blmplots.py

189 lines
6.4 KiB
Python

"""Specialised plots for functions defined in blmfuncs.py.
fixme:
-- Im normalsing all color mapping input vectors to [0,1]. This will
destroy informative numerical values in colorbar (but we
are not showing these anyway). A better fix would be to let the
colorbar listen to the scalarmappable instance and corect itself, but
I did not get that to work ...
fixme2:
-- If scatterplot is not inited with a colorvector there will be no
colorbar, but when adding colors the colorbar shoud be created.
"""
from fluents import plots
from scipy import dot,sum,diag,arange,log,mean,newaxis,sqrt
from matplotlib import cm
import pylab as PB
class PcaScorePlot(plots.ScatterPlot):
"""PCA Score plot"""
def __init__(self, model, absi=0, ordi=1):
self._T = model.model['T']
dataset_1 = model.as_dataset('T')
dataset_2 = dataset_1
id_dim = dataset_1.get_dim_name(0)
sel_dim = dataset_1.get_dim_name(1)
id_1, = dataset_1.get_identifiers(sel_dim, [absi])
id_2, = dataset_1.get_identifiers(sel_dim, [ordi])
plots.ScatterPlot.__init__(self, dataset_1, dataset_2, id_dim, sel_dim, id_1, id_2 ,c='b' ,s=40 , name='pca-scores')
def set_absicca(self, n):
self.xaxis_data = self._T[:,n]
def set_ordinate(self, n):
self.yaxis_data = self._T[:,n]
class PcaLoadingPlot(plots.ScatterPlot):
"""PCA Loading plot"""
def __init__(self, model, absi=0, ordi=1):
self._P = model.model['P']
dataset_1 = model.as_dataset('P')
dataset_2 = dataset_1
id_dim = dataset_1.get_dim_name(0)
sel_dim = dataset_1.get_dim_name(1)
id_1, = dataset_1.get_identifiers(sel_dim, [absi])
id_2, = dataset_1.get_identifiers(sel_dim, [ordi])
if model.model.has_key('p_tsq'):
col = model.model['p_tsq'].ravel()
col = normalise(col)
else:
col = 'g'
plots.ScatterPlot.__init__(self, dataset_1, dataset_2, id_dim, sel_dim, id_1, id_2,c=col,s=20, name='pls-loadings')
def set_absicca(self, n):
self.xaxis_data = self._P[:,n]
def set_ordinate(self, n):
self.yaxis_data = self._P[:,n]
class PlsScorePlot(plots.ScatterPlot):
"""PLS Score plot"""
def __init__(self, model, absi=0, ordi=1):
self._T = model.model['T']
dataset_1 = model.as_dataset('T')
dataset_2 = dataset_1
id_dim = dataset_1.get_dim_name(0)
sel_dim = dataset_1.get_dim_name(1)
id_1, = dataset_1.get_identifiers(sel_dim, [absi])
id_2, = dataset_1.get_identifiers(sel_dim, [ordi])
plots.ScatterPlot.__init__(self, dataset_1, dataset_2,
id_dim, sel_dim, id_1, id_2 ,
c='b' ,s=40 , name='pls-scores')
def set_absicca(self, n):
self.xaxis_data = self._T[:,n]
def set_ordinate(self, n):
self.yaxis_data = self._T[:,n]
class PlsLoadingPlot(plots.ScatterPlot):
"""PLS Loading plot"""
def __init__(self, model, absi=0, ordi=1):
self._P = model.model['P']
dataset_1 = model.as_dataset('P')
dataset_2 = dataset_1
id_dim = dataset_1.get_dim_name(0)
sel_dim = dataset_1.get_dim_name(1)
id_1, = dataset_1.get_identifiers(sel_dim, [absi])
id_2, = dataset_1.get_identifiers(sel_dim, [ordi])
if model.model.has_key('w_tsq'):
col = model.model['w_tsq'].ravel()
col = normalise(col)
else:
col = 'g'
plots.ScatterPlot.__init__(self, dataset_1, dataset_2,
id_dim, sel_dim, id_1, id_2,
c=col, s=20, name='loadings')
def set_absicca(self, n):
self.xaxis_data = self._P[:,n]
def set_ordinate(self, n):
self.yaxis_data = self._T[:,n]
class LineViewXc(plots.LineViewPlot):
"""A line view of centered raw data
"""
def __init__(self, model, name='Profiles'):
# copy, center, plot
x = model._dataset['X'].copy()
x._array = x._array - mean(x._array,0)[newaxis]
plots.LineViewPlot.__init__(self, x, 1, None, name)
class ParalellCoordinates(plots.Plot):
"""Parallell coordinates for score loads with many comp.
"""
def __init__(self, model, p='loads'):
pass
class PlsQvalScatter(plots.ScatterPlot):
"""A vulcano like plot of loads vs qvals
"""
def __init__(self, model, pc=0):
if not model.model.has_key('w_tsq'):
return
self._W = model.model['P']
dataset_1 = model.as_dataset('P')
dataset_2 = model.as_dataset('w_tsq')
id_dim = dataset_1.get_dim_name(0) #genes
sel_dim = dataset_1.get_dim_name(1) #_comp
sel_dim_2 = dataset_2.get_dim_name(1) #_zero_dim
id_1, = dataset_1.get_identifiers(sel_dim, [0])
id_2, = dataset_2.get_identifiers(sel_dim_2, [0])
if model.model.has_key('w_tsq'):
col = model.model['w_tsq'].ravel()
col = normalise(col)
else:
col = 'g'
plots.ScatterPlot.__init__(self, dataset_1, dataset_2,
id_dim, sel_dim, id_1, id_2,
c=col, s=20, sel_dim_2=sel_dim_2,
name='Load Volcano')
class PredictionErrorPlot(plots.Plot):
"""A boxplot of prediction error vs. comp. number.
"""
def __init__(self, model, name="Pred. Err."):
if not model.model.has_key('sep'):
logger.log('notice', 'Model has no calculations of sep')
return
plots.Plot.__init__(self, name)
self._frozen = True
self.current_dim = 'johndoe'
self.ax = self.fig.add_subplot(111)
# draw
sep = model.model['sep']
aopt = model.model['aopt']
bx_plot_lines = self.ax.boxplot(sqrt(sep))
aopt_marker = self.ax.axvline(aopt, linewidth=10,
color='r',zorder=0,
alpha=.5)
# add canvas
self.add(self.canvas)
self.canvas.show()
def set_current_selection(self, selection):
pass
class InfluencePlot(plots.ScatterPlot):
"""
"""
pass
def normalise(x):
"""Scale vector x to [0,1]
"""
x = x - x.min()
x = x/x.max()
return x