Projects/laydi
Projects
/
laydi
Archived
7
0
Fork 0
This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
laydi/scripts/lpls/run_smoker.py

316 lines
9.3 KiB
Python

import sys
import rpy
from pylab import gca, figure, subplot,plot
from scipy import *
from scipy.linalg import norm
from lpls import correlation_loadings
import rpy_go
sys.path.append("../../fluents") # home of dataset
sys.path.append("../../fluents/lib") # home of cx_stats
sys.path.append("/home/flatberg/fluents/scripts/lpls")
import dataset
import cx_stats
from engines import nipals_lpls
from validation import lpls_val, lpls_jk
from plots_lpls import plot_corrloads, plot_dag
import plots_lpls
# Possible outliers
# http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16817967
sample_outliers = ['OV:NCI_ADR_RES', 'CNS:SF_295', 'CNS:SF_539', 'RE:SN12C', 'LC:NCI_H226', 'LC:NCI_H522', 'PR:PC_3', 'PR:DU_145']
####### OPTIONS ###########
# data
chip = "hgu133a"
use_data = 'uma'
subset = 'plsr'
small_test = False
use_sbg_subset = True # the sandberg nci-Ygroups subset
std_y = True
std_z = False
# go
ontology = "bp"
min_genes = 5
similarities = ("JiangConrath","Resnik","Lin","CoutoEnriched","CoutoJiangConrath","CoutoResnik","CoutoLin")
meth = similarities[2]
go_term_sim = "OA"
# lpls
a_max = 5
aopt = 2
xz_alpha = .4
w_alpha = .3
mean_ctr = [2, 0, 2]
nsets = None
qval_cutoff = 0.01
n_iter = 200
alpha_check = False
calc_rmsep = False
######## DATA ##########
if use_data=='smoker':
# full smoker data
DX = dataset.read_ftsv(open("../../data/smokers-full/Smokers.ftsv"))
DY = dataset.read_ftsv(open("../../data/smokers-full/Yg.ftsv"))
Y = DY.asarray().astype('d')
gene_ids = DX.get_identifiers('gene_ids', sorted=True)
elif use_data=='scherf':
DX = dataset.read_ftsv(open("../../data/scherf/scherfX.ftsv"))
DY = dataset.read_ftsv(open("../../data/scherf/scherfY.ftsv"))
Yg = DY.asarray().astype('d')
gene_ids = DX.get_identifiers('gene_ids', sorted=True)
elif use_data=='staunton':
pass
elif use_data=='uma':
DX = dataset.read_ftsv(open("../../data/uma/X133.ftsv"))
DYg = dataset.read_ftsv(open("../../data/uma/Yg133.ftsv"))
DY = dataset.read_ftsv(open("../../data/uma/Yd.ftsv"))
Y = DY.asarray().astype('d')
Yg = DYg.asarray().astype('d')
gene_ids = DX.get_identifiers('gene_ids', sorted=True)
# use subset with defined GO-terms
ic_all = 2026006.0 # sum of all ic in BP
max_ic = -log(1/ic_all)
ic_cutoff = -log(min_genes/ic_all)/max_ic
print "Information cutoff for min %d genes: %.2f" %(min_genes, ic_cutoff)
gene2goterms = rpy_go.goterms_from_gene(gene_ids, ic_cutoff=ic_cutoff)
all_terms = set()
for t in gene2goterms.values():
all_terms.update(t)
terms = list(all_terms)
print "\nNumber of go-terms: %s" %len(terms)
# update genelist
gene_ids = gene2goterms.keys()
print "\nNumber of genes: %s" %len(gene_ids)
X = DX.asarray()
index = DX.get_indices('gene_ids', gene_ids)
X = X[:,index]
# Use only subset defined on GO
ontology = 'BP'
print "\n\nFiltering genes by Go terms "
# use subset based on SAM,PLSR or (IQR)
if subset=='sam':
# select subset genes by SAM
rpy.r.library("siggenes")
rpy.r.library("qvalue")
rpy.r.assign("data", X.T)
cl = dot(DYg.asarray(), diag(arange(Yg.shape[1])+1)).sum(1)
rpy.r.assign("cl", cl)
rpy.r.assign("B", 20)
# Perform a SAM analysis.
print "Starting SAM"
sam = rpy.r('sam.out<-sam(data=data,cl=cl,B=B,rand=123)')
print "SAM done"
# Compute the q-values of the genes.
qq = rpy.r('qobj<-qvalue(sam.out@p.value)')
qvals = asarray(qq['qvalues'])
# cut off
cutoff = 0.001
index = where(qvals<cutoff)[0]
if small_test:
index = index[:20]
# Subset data
X = X[:,index]
gene_ids = [gid for i, gid in enumerate(gene_ids) if i in index]
print "\nNumber of genes: %s" %len(gene_ids)
print "\nWorking on subset with %s genes " %len(gene_ids)
# update valid go-terms
gene2goterms = rpy_go.goterms_from_gene(gene_ids, ic_cutoff=ic_cutoff)
all_terms = set()
for t in gene2goterms.values():
all_terms.update(t)
terms = list(all_terms)
print "\nNumber of go-terms: %s" %len(terms)
# update genelist
gene_ids = gene2goterms.keys()
print "\nNumber of genes: %s" %len(gene_ids)
elif subset=='plsr':
cx_stats.pls_qvals(X, Y)
else:
# noimp (smoker data is prefiltered)
pass
rpy.r.library("GOSim")
# Go-term similarity matrix
print "Term-term similarity matrix (method = %s)" %meth
print "\nCalculating term-term similarity matrix"
if meth=="CoutoEnriched":
aa = 0
ba = 0
rpy.r.setEnrichmentFactors(alpha = aa, beta =ba)
rpytmat = rpy.with_mode(rpy.NO_CONVERSION, rpy.r.getTermSim)(terms, method=meth,verbose=False)
tmat = rpy.r.assign("haha", rpytmat)
print "\n Calculating Z matrix"
Z = rpy_go.genego_sim(gene2goterms,gene_ids,terms,rpytmat,go_term_sim=go_term_sim,term_sim=meth)
# update data (X) matrix
newind = DX.get_indices('gene_ids', gene_ids)
Xr = DX.asarray()[:,newind]
######## LPLSR ########
print "LPLSR ..."
Y = Yg
if use_sbg_subset:
Y_old = Y.copy()
Xr_old = Xr.copy()
keep_samples = ['CN', 'ME', 'LE', 'CO', 'RE']
sample_ids = DY.get_identifiers('cline', sorted=True)
keep_ind = [i for i,name in enumerate(sample_ids) if name[:2] in keep_samples]
Xr = Xr[keep_ind,:]
Y = Y[keep_ind,:]
Y = Y[:, where(Y.sum(0)>1)[0]]
# standardize Z?
sdtz = False
if sdtz:
Z = Z/Z.std(0)
sdty = True
if sdty:
Y = Y/Y.std(0)
lpls_result = nipals_lpls(Xr,Y,Z, a_max,alpha=xz_alpha,mean_ctr=mean_ctr)
globals().update(lpls_result)
# Correlation loadings
dx,Rx,rssx = correlation_loadings(Xr, T, P)
dx,Ry,rssy = correlation_loadings(Y, T, Q)
cadz,Rz,rssz = correlation_loadings(Z.T, W, L)
# Prediction error
if calc_rmsep:
rmsep , yhat, class_error = lpls_val(Xr, Y, Z, a_max, alpha=xz_alpha,mean_ctr=mean_ctr)
if alpha_check:
Alpha = arange(0.01, 1, .1)
Rmsep,Yhat, CE = [],[],[]
for a in Alpha:
print "alpha %f" %a
rmsep , yhat, ce = lpls_val(Xr, Y, Z, a_max, alpha=a,mean_ctr=mean_ctr,nsets=nsets)
Rmsep.append(rmsep.copy())
#Yhat.append(yhat.copy())
#CE.append(ce.copy())
Rmsep = asarray(Rmsep)
#Yhat = asarray(Yhat)
#CE = asarray(CE)
# Significance Hotellings T
#Wx, Wz = lpls_jk(Xr, Y, Z, aopt, mean_ctr=mean_ctr, xz_alpha=xz_alpha, nsets=nsets)
#Ws = W*apply_along_axis(norm, 0, T)
#tsqx = cx_stats.hotelling(Wx, Ws[:,:aopt], alpha=w_alpha)
#tsqz = cx_stats.hotelling(Wz, L[:,:aopt], alpha=0)
# qvals
cal_tsq_z, pert_tsq_z, cal_tsq_x, pert_tsq_x = cx_stats.lpls_qvals(Xr, Y, Z, aopt=aopt, zx_alpha=xz_alpha, n_iter=n_iter)
qvalz = cx_stats.fdr(cal_tsq_z, pert_tsq_z, 'median')
qvalx = cx_stats.fdr(cal_tsq_x, pert_tsq_x, 'median')
# p-values, set-enrichment analysis
active_genes_ids = where(qvalx < qval_cutoff)[0]
active_genes = [name for i,name in enumerate(gene_ids) if i in active_genes_ids]
active_universe = gene_ids
gsea_result, gsea_params= rpy_go.gene_GO_hypergeo_test(genelist=active_genes,universe=active_universe,chip=chip,pval_cutoff=1.0,cond=False,test_direction="over")
active_goterms_ids = where(qvalz < qval_cutoff)[0]
active_goterms = [name for i,name in enumerate(terms) if i in active_goterms_ids]
gsea_t2p = dict(zip(gsea_result['GOBPID'], gsea_result['Pvalue']))
#### PLOTS ####
from pylab import *
from scipy import where
dg = plots_lpls.dag(terms, "bp")
pos = None
figure(300)
subplot(2,1,1)
pos = plots_lpls.plot_dag(dg, node_color=cal_tsq_z, pos=pos, nodelist=terms)
subplot(2,1,2)
pos = plot_dag(dg, node_color=qvalz, pos=pos, nodelist=terms)
if calc_rmsep:
figure(1) #rmsep
bar_w = .2
bar_col = 'rgb'*5
m = Y.shape[1]
for a in range(m):
bar(arange(a_max)+a*bar_w+.1, rmsep[:,a], width=bar_w, color=bar_col[a])
ylim([rmsep.min()-.05, rmsep.max()+.05])
title('RMSEP: Y(%s)' %Y.get_name())
#figure(2)
#for a in range(m):
# bar(arange(a_max)+a*bar_w+.1, class_error[:,a], width=bar_w, color=bar_col[a])
#ylim([class_error.min()-.05, class_error.max()+.05])
#title('Classification accuracy')
figure(3) # Hyploid correlations
tsqz = cal_tsq_z
tsqx = cal_tsq_x
tsqz_s = 250*tsqz/tsqz.max()
td = rpy_go.goterm2desc(terms)
tlabels = [td[i] for i in terms]
keep = where(qvalz<0.01)[0]
k_Rz = Rz[keep,:]
k_tsqz_s = tsqz_s[keep]
k_tsq = tsqz[keep]
k_tlabels = [name for i,name in enumerate(tlabels) if i in keep]
plot_corrloads(Rz, pc1=0, pc2=1, s=tsqz_s, c=tsqz, zorder=5, expvar=evz, ax=None,alpha=.5,labels=None)
#plot_corrloads(k_Rz, pc1=0, pc2=1, s=k_tsqz_s, c=k_tsqz, zorder=5, expvar=evz, ax=None,alpha=.5,labels=None)
ax = gca()
yglabels = DYg.get_identifiers(DYg.get_dim_name()[1], sorted=True)
ylabels = DY.get_identifiers(DY.get_dim_name()[1], sorted=True)
blabels = yglabels[:]
blabels.append(ylabels[0])
plot_corrloads(Ry, pc1=0, pc2=1, s=150, c='g', marker='s', zorder=5, expvar=evy, ax=ax,labels=None,alpha=.9)
plot_corrloads(Rx, pc1=0, pc2=1, s=5, c='k', zorder=1, expvar=evx, ax=ax)
figure(4)
subplot(221)
ax = gca()
plot_corrloads(Rx, pc1=0, pc2=1, s=tsqx/2.0, c='b', zorder=5, expvar=evx, ax=ax)
# title('X correlation')
subplot(222)
ax = gca()
plot_corrloads(Ry, pc1=0, pc2=1, s=150, c='g', zorder=5, expvar=evy, ax=ax)
#title('Y correlation')
subplot(223)
ax = gca()
plot_corrloads(Rz, pc1=0, pc2=1, s=tsqz/10.0, c='r', zorder=5, expvar=evz, ax=ax)
#title('Z correlation')
subplot(224)
plot(arange(len(evx)), evx, 'b', label='X', linewidth=2)
plot(evy, 'g', label='Y', linewidth=2)
plot(evz, 'r', label='Z', linewidth=2)
legend(loc=2)
ylabel('Explained variance')
xlabel('Component')
show()