88 lines
2.9 KiB
Python
88 lines
2.9 KiB
Python
import pylab
|
|
import matplotlib
|
|
import networkx as nx
|
|
import scipy
|
|
|
|
def plot_corrloads(R, pc1=0,pc2=1,s=20, c='b', zorder=5,expvar=None,ax=None,drawback=True, labels=None):
|
|
""" Correlation loading plot."""
|
|
|
|
# background
|
|
if ax==None or drawback==True:
|
|
radius = 1
|
|
center = (0,0)
|
|
c100 = matplotlib.patches.Circle(center,radius=radius,
|
|
facecolor='gray',
|
|
alpha=.1,
|
|
zorder=1)
|
|
c50 = matplotlib.patches.Circle(center, radius=radius/2.0,
|
|
facecolor='gray',
|
|
alpha=.1,
|
|
zorder=2)
|
|
ax = pylab.gca()
|
|
ax.add_patch(c100)
|
|
ax.add_patch(c50)
|
|
ax.axhline(lw=1.5,color='k')
|
|
ax.axvline(lw=1.5,color='k')
|
|
|
|
# corrloads
|
|
ax.scatter(R[:,pc1], R[:,pc2], s=s, c=c,zorder=zorder)
|
|
ax.set_xlim([-1,1])
|
|
ax.set_ylim([-1,1])
|
|
if expvar!=None:
|
|
xstring = "Comp: %d expl.var: %.1f " %(pc1+1, expvar[pc1])
|
|
pylab.xlabel(xstring)
|
|
ystring = "Comp: %d expl.var.: %.1f " %(pc2+1, expvar[pc2])
|
|
pylab.ylabel(ystring)
|
|
if labels!=None:
|
|
assert(len(labels)==R.shape[0])
|
|
for name, r in zip(labels, R):
|
|
pylab.text(r[pc1], r[pc2], " " + name)
|
|
#pylab.show()
|
|
|
|
def plot_dag(edge_dict, node_color='b', node_size=30,labels=None,nodelist=None,pos=None):
|
|
# networkx does not play well with colon in node names
|
|
clean_edges = {}
|
|
for head, neigb in edge_dict.items():
|
|
head = head.replace(":", "_")
|
|
nei = [i.replace(":", "_") for i in neigb]
|
|
clean_edges[head] = nei
|
|
if pos==None:
|
|
G = nx.from_dict_of_lists(clean_edges, nx.DiGraph(name='GO'))
|
|
pos = nx.pydot_layout(G, prog='dot')
|
|
G = nx.from_dict_of_lists(edge_dict, nx.DiGraph(name='GO'))
|
|
if len(node_color)>1:
|
|
assert(len(node_color)==len(nodelist))
|
|
if labels!=None:
|
|
with_labels=True
|
|
|
|
nx.draw_networkx(G,pos, with_labels=with_labels, node_size=node_size, node_color=node_color, nodelist=nodelist)
|
|
|
|
|
|
def plot_ZXcorr(gene_ids, term_ids, gene2go, X, D, scale=True):
|
|
""" Plot correlation/covariance between genes as a function of
|
|
semantic difference.
|
|
|
|
input: X (n, p) data matrix
|
|
D (p, p) gene-gene sematic similarity matrix
|
|
"""
|
|
D = scipy.corrcoef(X)
|
|
term2ind = dict(enumerate(term_ids))
|
|
for i, gene_i in enumerate(gene_ids):
|
|
for j, gene_j in enumerate(gene_ids):
|
|
if j<i:
|
|
r2 = D[i,j]
|
|
terms_i = gene2go[gene_i]
|
|
terms_j = gene2go[gene_j]
|
|
for ti, term in enumerate(term_ids):
|
|
if term in terms_i:
|
|
pass
|
|
|
|
|
|
def clustering_index(T, Yg):
|
|
pass
|
|
|
|
|
|
|
|
|
|
|