This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
laydi/fluents/lib/engines.py
2007-11-07 12:34:13 +00:00

880 lines
24 KiB
Python

"""Module contain algorithms for low-rank models.
There is almost no typechecking of any kind here, just focus on speed
"""
import math
import warnings
from scipy.linalg import svd,inv
from scipy import dot,empty,eye,newaxis,zeros,sqrt,diag,\
apply_along_axis,mean,ones,randn,empty_like,outer,r_,c_,\
rand,sum,cumsum,matrix, expand_dims,minimum,where,arange,inner,tile
has_sym = True
has_arpack = True
try:
from symeig import symeig
except:
has_sym = False
try:
from scipy.sandbox import arpack
except:
has_arpack = False
def pca(a, aopt,scale='scores',mode='normal',center_axis=0):
""" Principal Component Analysis.
Performs PCA on given matrix and returns results in a dictionary.
:Parameters:
a : array
Data measurement matrix, (samples x variables)
aopt : int
Number of components to use, aopt<=min(samples, variables)
:Returns:
results : dict
keys -- values, T -- scores, P -- loadings, E -- residuals,
lev --leverages, ssq -- sum of squares, expvar -- cumulative
explained variance, aopt -- number of components used
:OtherParam eters:
mode : str
Amount of info retained, ('fast', 'normal', 'detailed')
center_axis : int
Center along given axis. If neg.: no centering (-inf,..., matrix modes)
:SeeAlso:
- pcr : other blm
- pls : other blm
- lpls : other blm
Notes
-----
Uses kernel speed-up if m>>n or m<<n.
If residuals turn rank deficient, a lower number of component than given
in input will be used. The number of components used is given in
results-dict.
Examples
--------
>>> import scipy,engines
>>> a=scipy.asarray([[1,2,3],[2,4,5]])
>>> dat=engines.pca(a, 2)
>>> dat['expvarx']
array([0.,99.8561562, 100.])
"""
m, n = a.shape
assert(aopt<=min(m,n))
if center_axis>=0:
a = a - expand_dims(a.mean(center_axis), center_axis)
if m>(n+100) or n>(m+100):
u, s, v = esvd(a, amax=None) # fixme:amax option need to work with expl.var
else:
u, s, vt = svd(a, 0)
v = vt.T
e = s**2
tol = 1e-10
eff_rank = sum(s>s[0]*tol)
aopt = minimum(aopt, eff_rank)
T = u*s
s = s[:aopt]
T = T[:,:aopt]
P = v[:,:aopt]
if scale=='loads':
T = T/s
P = P*s
if mode == 'fast':
return {'T':T, 'P':P, 'aopt':aopt}
if mode=='detailed':
E = empty((aopt, m, n))
ssq = []
lev = []
for ai in range(aopt):
E[ai,:,:] = a - dot(T[:,:ai+1], P[:,:ai+1].T)
ssq.append([(E[ai,:,:]**2).mean(0), (E[ai,:,:]**2).mean(1)])
if scale=='loads':
lev.append([((s*T)**2).sum(1), (P**2).sum(1)])
else:
lev.append([(T**2).sum(1), ((s*P)**2).sum(1)])
else:
# residuals
E = a - dot(T, P.T)
#E = a
SEP = E**2
ssq = [SEP.sum(0), SEP.sum(1)]
# leverages
if scale=='loads':
lev = [(1./m)+(T**2).sum(1), (1./n)+((P/s)**2).sum(1)]
else:
lev = [(1./m)+((T/s)**2).sum(1), (1./n)+(P**2).sum(1)]
# variances
expvarx = r_[0, 100*e.cumsum()/e.sum()][:aopt+1]
return {'T':T, 'P':P, 'E':E, 'expvarx':expvarx, 'levx':lev, 'ssqx':ssq, 'aopt':aopt, 'eigvals': e[:aopt,newaxis]}
def pcr(a, b, aopt, scale='scores',mode='normal',center_axis=0):
""" Principal Component Regression.
Performs PCR on given matrix and returns results in a dictionary.
:Parameters:
a : array
Data measurement matrix, (samples x variables)
b : array
Data response matrix, (samples x responses)
aopt : int
Number of components to use, aopt<=min(samples, variables)
:Returns:
results : dict
keys -- values, T -- scores, P -- loadings, E -- residuals,
levx -- leverages, ssqx -- sum of squares, expvarx -- cumulative
explained variance, aopt -- number of components used
:OtherParameters:
mode : str
Amount of info retained, ('fast', 'normal', 'detailed')
center_axis : int
Center along given axis. If neg.: no centering (-inf,..., matrix modes)
:SeeAlso:
- pca : other blm
- pls : other blm
- lpls : other blm
Notes
-----
Uses kernel speed-up if m>>n or m<<n.
If residuals turn rank deficient, a lower number of component than given
in input will be used. The number of components used is given in results-dict.
Examples
--------
>>> import scipy,engines
>>> a=scipy.asarray([[1,2,3],[2,4,5]])
>>> b=scipy.asarray([[1,1],[2,3]])
>>> dat=engines.pcr(a, 2)
>>> dat['expvarx']
array([0.,99.8561562, 100.])
"""
k, l = m_shape(b)
if center_axis>=0:
b = b - expand_dims(b.mean(center_axis), center_axis)
dat = pca(a, aopt=aopt, scale=scale, mode=mode, center_axis=center_axis)
T = dat['T']
weights = apply_along_axis(vnorm, 0, T)**2
if scale=='loads':
Q = dot(b.T, T*weights)
else:
Q = dot(b.T, T/weights)
if mode=='fast':
dat.update({'Q':Q})
return dat
if mode=='detailed':
F = empty((aopt, k, l))
for i in range(aopt):
F[i,:,:] = b - dot(T[:,:i+1], Q[:,:i+1].T)
else:
F = b - dot(T, Q.T)
expvary = r_[0, 100*((T**2).sum(0)*(Q**2).sum(0)/(b**2).sum()).cumsum()[:aopt]]
#fixme: Y-var leverages
dat.update({'Q':Q, 'F':F, 'expvary':expvary})
return dat
def pls(a, b, aopt=2, scale='scores', mode='normal', center_axis=-1, ab=None):
"""Partial Least Squares Regression.
Performs PLS on given matrix and returns results in a dictionary.
:Parameters:
a : array
Data measurement matrix, (samples x variables)
b : array
Data response matrix, (samples x responses)
aopt : int
Number of components to use, aopt<=min(samples, variables)
:Returns:
results : dict
keys -- values, T -- scores, P -- loadings, E -- residuals,
levx -- leverages, ssqx -- sum of squares, expvarx -- cumulative
explained variance of descriptors, expvary -- cumulative explained
variance of responses, aopt -- number of components used
:OtherParameters:
mode : str
Amount of info retained, ('fast', 'normal', 'detailed')
center_axis : int
Center along given axis. If neg.: no centering (-inf,..., matrix modes)
:SeeAlso:
- pca : other blm
- pcr : other blm
- lpls : other blm
Notes
-----
Uses kernel speed-up if m>>n or m<<n.
If residuals turn rank deficient, a lower number of component than given
in input will be used. The number of components used is given in results-dict.
Examples
--------
>>> import scipy,engines
>>> a=scipy.asarray([[1,2,3],[2,4,5]])
>>> b=scipy.asarray([[1,1],[2,3]])
>>> dat=engines.pls(a, b, 2)
>>> dat['expvarx']
array([0.,99.8561562, 100.])
"""
m, n = m_shape(a)
if ab!=None:
mm, l = m_shape(ab)
assert(m==mm)
else:
k, l = m_shape(b)
if center_axis>=0:
a = a - expand_dims(a.mean(center_axis), center_axis)
b = b - expand_dims(b.mean(center_axis), center_axis)
W = empty((n, aopt))
P = empty((n, aopt))
R = empty((n, aopt))
Q = empty((l, aopt))
T = empty((m, aopt))
B = empty((aopt, n, l))
tt = empty((aopt,))
if ab==None:
ab = dot(a.T, b)
for i in range(aopt):
if ab.shape[1]==1: #pls 1
w = ab.reshape(n, l)
w = w/vnorm(w)
elif n<l: # more yvars than xvars
if has_sym:
s, w = symeig(dot(ab, ab.T),range=[n,n],overwrite=True)
else:
w, s, vh = svd(dot(ab, ab.T))
w = w[:,:1]
else: # standard wide xdata
if has_sym:
s, q = symeig(dot(ab.T, ab),range=[l,l],overwrite=True)
else:
q, s, vh = svd(dot(ab.T, ab))
q = q[:,:1]
w = dot(ab, q)
w = w/vnorm(w)
r = w.copy()
if i>0:
for j in range(0, i, 1):
r = r - dot(P[:,j].T, w)*R[:,j][:,newaxis]
t = dot(a, r)
tt[i] = tti = dot(t.T, t).ravel()
p = dot(a.T, t)/tti
q = dot(r.T, ab).T/tti
ab = ab - dot(p, q.T)*tti
T[:,i] = t.ravel()
W[:,i] = w.ravel()
if mode=='fast' and i==aopt-1:
if scale=='loads':
tnorm = sqrt(tt)
T = T/tnorm
W = W*tnorm
return {'T':T, 'W':W}
P[:,i] = p.ravel()
R[:,i] = r.ravel()
Q[:,i] = q.ravel()
#B[i] = dot(R[:,:i+1], Q[:,:i+1].T)
qnorm = apply_along_axis(vnorm, 0, Q)
tnorm = sqrt(tt)
pp = (P**2).sum(0)
if mode=='detailed':
E = empty((aopt, m, n))
F = empty((aopt, k, l))
ssqx, ssqy = [], []
leverage = empty((aopt, m))
h2x = [] #hotellings T^2
h2y = []
for ai in range(aopt):
E[ai,:,:] = a - dot(T[:,:ai+1], P[:,:ai+1].T)
F[i-1] = b - dot(T[:,:i], Q[:,:i].T)
ssqx.append([(E[ai,:,:]**2).mean(0), (E[ai,:,:]**2).mean(1)])
ssqy.append([(F[ai,:,:]**2).mean(0), (F[ai,:,:]**2).mean(1)])
leverage[ai,:] = 1./m + ((T[:,:ai+1]/tnorm[:ai+1])**2).sum(1)
h2y.append(1./k + ((Q[:,:ai+1]/qnorm[:ai+1])**2).sum(1))
else:
# residuals
E = a - dot(T, P.T)
F = b - dot(T, Q.T)
sepx = E**2
ssqx = [sepx.sum(0), sepx.sum(1)]
sepy = F**2
ssqy = [sepy.sum(0), sepy.sum(1)]
# leverage
leverage = 1./m + ((T/tnorm)**2).sum(1)
h2x = []
h2y = []
# variances
tp= tt*pp
tq = tt*qnorm*qnorm
expvarx = r_[0, 100*tp/(a*a).sum()]
expvary = r_[0, 100*tq/(b*b).sum()]
if scale=='loads':
T = T/tnorm
W = W*tnorm
Q = Q*tnorm
P = P*tnorm
return {'Q':Q, 'P':P, 'T':T, 'W':W, 'R':R, 'E':E, 'F':F,
'expvarx':expvarx, 'expvary':expvary, 'ssqx':ssqx, 'ssqy':ssqy,
'leverage':leverage, 'h2':h2x}
def w_simpls(aat, b, aopt):
""" Simpls for wide matrices.
Fast pls for crossval, used in calc rmsep for wide X
There is no P or W. T is normalised
"""
bb = b.copy()
m, m = aat.shape
U = empty((m, aopt)) # W
T = empty((m, aopt))
H = empty((m, aopt)) # R
PROJ = empty((m, aopt)) # P?
for i in range(aopt):
q, s, vh = svd(dot(dot(b.T, aat), b), full_matrices=0)
u = dot(b, q[:,:1]) #y-factor scores
U[:,i] = u.ravel()
t = dot(aat, u)
t = t/vnorm(t)
T[:,i] = t.ravel()
h = dot(aat, t) #score-weights
H[:,i] = h.ravel()
PROJ[:,:i+1] = dot(T[:,:i+1], inv(dot(T[:,:i+1].T, H[:,:i+1])) )
if i<aopt:
b = b - dot(PROJ[:,:i+1], dot(H[:,:i+1].T,b) )
C = dot(bb.T, T)
return {'T':T, 'U':U, 'Q':C, 'H':H}
def w_pls(aat, b, aopt):
""" Pls for wide matrices.
Fast pls for crossval, used in calc rmsep for wide X
There is no P or W. T is normalised
aat = centered kernel matrix
b = centered y
"""
bb = b.copy()
k, l = m_shape(b)
m, m = m_shape(aat)
U = empty((m, aopt)) # W
T = empty((m, aopt))
R = empty((m, aopt)) # R
PROJ = empty((m, aopt)) # P?
for i in range(aopt):
if has_sym:
s, q = symeig(dot(dot(b.T, aat), b), range=(l,l),overwrite=True)
else:
q, s, vh = svd(dot(dot(b.T, aat), b), full_matrices=0)
q = q[:,:1]
u = dot(b , q) #y-factor scores
U[:,i] = u.ravel()
t = dot(aat, u)
t = t/vnorm(t)
T[:,i] = t.ravel()
r = dot(aat, t)#score-weights
#r = r/vnorm(r)
R[:,i] = r.ravel()
PROJ[:,: i+1] = dot(T[:,:i+1], inv(dot(T[:,:i+1].T, R[:,:i+1])) )
if i<aopt:
b = b - dot(PROJ[:,:i+1], dot(R[:,:i+1].T, b) )
C = dot(bb.T, T)
return {'T':T, 'U':U, 'Q':C, 'R':R}
def bridge(a, b, aopt, scale='scores', mode='normal', r=0):
"""Undeflated Ridged svd(X'Y)
"""
m, n = m_shape(a)
k, l = m_shape(b)
u, s, vt = svd(b, full_matrices=0)
g0 = dot(u*s, u.T)
g = (1 - r)*g0 + r*eye(m)
ag = dot(a.T, g)
u, s, vt = svd(ag, full_matrices=0)
W = u[:,:aopt]
K = vt[:aopt,:].T
T = dot(a, W)
tnorm = apply_along_axis(vnorm, 0, T) # norm of T-columns
if mode == 'fast':
if scale=='loads':
T = T/tnorm
W = W*tnorm
return {'T':T, 'W':W}
U = dot(g0, K) #fixme check this
Q = dot(b.T, dot(T, inv(dot(T.T, T)) ))
B = zeros((aopt, n, l), dtype='f')
for i in range(aopt):
B[i] = dot(W[:,:i+1], Q[:,:i+1].T)
if mode == 'detailed':
E = empty((aopt, m, n))
F = empty((aopt, k, l))
for i in range(aopt):
E[i] = a - dot(T[:,:i+1], W[:,:i+1].T)
F[i] = b - dot(a, B[i])
else: #normal
F = b - dot(a, B[-1])
E = a - dot(T, W.T)
if scale=='loads':
T = T/tnorm
W = W*tnorm
Q = Q*tnorm
return {'B':B, 'W':W, 'T':T, 'Q':Q, 'E':E, 'F':F, 'U':U, 'P':W}
def nipals_lpls(X, Y, Z, a_max, alpha=.7, mean_ctr=[2, 0, 1], scale='scores', verbose=False):
""" L-shaped Partial Least Sqaures Regression by the nipals algorithm.
(X!Z)->Y
:input:
X : data matrix (m, n)
Y : data matrix (m, l)
Z : data matrix (n, o)
:output:
T : X-scores
W : X-weights/Z-weights
P : X-loadings
Q : Y-loadings
U : X-Y relation
L : Z-scores
K : Z-loads
B : Regression coefficients X->Y
b0: Regression coefficient intercept
evx : X-explained variance
evy : Y-explained variance
evz : Z-explained variance
mnx : X location
mny : Y location
mnz : Z location
:Notes:
"""
if mean_ctr!=None:
xctr, yctr, zctr = mean_ctr
X, mnX = center(X, xctr)
Y, mnY = center(Y, yctr)
Z, mnZ = center(Z, zctr)
varX = (X**2).sum()
varY = (Y**2).sum()
varZ = (Z**2).sum()
m, n = X.shape
k, l = Y.shape
u, o = Z.shape
# initialize
U = empty((k, a_max))
Q = empty((l, a_max))
T = empty((m, a_max))
W = empty((n, a_max))
P = empty((n, a_max))
K = empty((o, a_max))
L = empty((u, a_max))
B = empty((a_max, n, l))
#b0 = empty((a_max, 1, l))
var_x = empty((a_max,))
var_y = empty((a_max,))
var_z = empty((a_max,))
MAX_ITER = 250
LIM = 1e-1
for a in range(a_max):
if verbose:
print "\nWorking on comp. %s" %a
u = Y[:,:1]
diff = 1
niter = 0
while (diff>LIM and niter<MAX_ITER):
niter += 1
u1 = u.copy()
w = dot(X.T, u)
w = w/sqrt(dot(w.T, w))
#w = w/dot(w.T, w)
l = dot(Z, w)
k = dot(Z.T, l)
k = k/sqrt(dot(k.T, k))
#k = k/dot(k.T, k)
w = alpha*k + (1-alpha)*w
#print sqrt(dot(w.T, w))
w = w/sqrt(dot(w.T, w))
t = dot(X, w)
c = dot(Y.T, t)
c = c/sqrt(dot(c.T, c))
u = dot(Y, c)
diff = dot((u-u1).T, (u-u1))
if verbose:
print "Converged after %s iterations" %niter
print "Error: %.2E" %diff
tt = dot(t.T, t)
p = dot(X.T, t)/tt
q = dot(Y.T, t)/tt
l = dot(Z, w)
U[:,a] = u.ravel()
W[:,a] = w.ravel()
P[:,a] = p.ravel()
T[:,a] = t.ravel()
Q[:,a] = q.ravel()
L[:,a] = l.ravel()
K[:,a] = k.ravel()
X = X - dot(t, p.T)
Y = Y - dot(t, q.T)
Z = (Z.T - dot(w, l.T)).T
var_x[a] = pow(X, 2).sum()
var_y[a] = pow(Y, 2).sum()
var_z[a] = pow(Z, 2).sum()
B[a] = dot(dot(W[:,:a+1], inv(dot(P[:,:a+1].T, W[:,:a+1]))), Q[:,:a+1].T)
#b0[a] = mnY - dot(mnX, B[a])
# variance explained
evx = 100.0*(1 - var_x/varX)
evy = 100.0*(1 - var_y/varY)
evz = 100.0*(1 - var_z/varZ)
if scale=='loads':
tnorm = apply_along_axis(vnorm, 0, T)
T = T/tnorm
W = W*tnorm
Q = Q*tnorm
knorm = apply_along_axis(vnorm, 0, K)
L = L*knorm
K = K/knorm
return {'T':T, 'W':W, 'P':P, 'Q':Q, 'U':U, 'L':L, 'K':K, 'B':B, 'evx':evx, 'evy':evy, 'evz':evz,'mnx': mnX, 'mny': mnY, 'mnz': mnZ}
def nipals_pls(X, Y, a_max, alpha=.7, ax_center=0, mode='normal', scale='scores', verbose=False):
"""Partial Least Sqaures Regression by the nipals algorithm.
(X!Z)->Y
:input:
X : data matrix (m, n)
Y : data matrix (m, l)
:output:
T : X-scores
W : X-weights/Z-weights
P : X-loadings
Q : Y-loadings
U : X-Y relation
B : Regression coefficients X->Y
b0: Regression coefficient intercept
evx : X-explained variance
evy : Y-explained variance
evz : Z-explained variance
:Notes:
"""
if ax_center>=0:
mn_x = expand_dims(X.mean(ax_center), ax_center)
mn_y = expand_dims(Y.mean(ax_center), ax_center)
X = X - mn_x
Y = Y - mn_y
varX = pow(X, 2).sum()
varY = pow(Y, 2).sum()
m, n = X.shape
k, l = Y.shape
# initialize
U = empty((k, a_max))
Q = empty((l, a_max))
T = empty((m, a_max))
W = empty((n, a_max))
P = empty((n, a_max))
B = empty((a_max, n, l))
b0 = empty((a_max, m, l))
var_x = empty((a_max,))
var_y = empty((a_max,))
t1 = X[:,:1]
for a in range(a_max):
if verbose:
print "\n Working on comp. %s" %a
u = Y[:,:1]
diff = 1
MAX_ITER = 100
lim = 1e-16
niter = 0
while (diff>lim and niter<MAX_ITER):
niter += 1
#u1 = u.copy()
w = dot(X.T, u)
w = w/sqrt(dot(w.T, w))
#l = dot(Z, w)
#k = dot(Z.T, l)
#k = k/sqrt(dot(k.T, k))
#w = alpha*k + (1-alpha)*w
#w = w/sqrt(dot(w.T, w))
t = dot(X, w)
q = dot(Y.T, t)
q = q/sqrt(dot(q.T, q))
u = dot(Y, q)
diff = vnorm(t1 - t)
t1 = t.copy()
if verbose:
print "Converged after %s iterations" %niter
#tt = dot(t.T, t)
#p = dot(X.T, t)/tt
#q = dot(Y.T, t)/tt
#l = dot(Z, w)
p = dot(X.T, t)/dot(t.T, t)
p_norm = vnorm(p)
t = t*p_norm
w = w*p_norm
p = p/p_norm
U[:,a] = u.ravel()
W[:,a] = w.ravel()
P[:,a] = p.ravel()
T[:,a] = t.ravel()
Q[:,a] = q.ravel()
X = X - dot(t, p.T)
Y = Y - dot(t, q.T)
var_x[a] = pow(X, 2).sum()
var_y[a] = pow(Y, 2).sum()
B[a] = dot(dot(W[:,:a+1], inv(dot(P[:,:a+1].T, W[:,:a+1]))), Q[:,:a+1].T)
b0[a] = mn_y - dot(mn_x, B[a])
# variance explained
evx = 100.0*(1 - var_x/varX)
evy = 100.0*(1 - var_y/varY)
if scale=='loads':
tnorm = apply_along_axis(vnorm, 0, T)
T = T/tnorm
W = W*tnorm
Q = Q*tnorm
return {'T':T, 'W':W, 'P':P, 'Q':Q, 'U':U, 'B':B, 'b0':b0, 'evx':evx, 'evy':evy,
'mnx': mnX, 'mny': mnY, 'xc': X, 'yc': Y}
########### Helper routines #########
def m_shape(array):
return matrix(array).shape
def esvd(data, amax=None):
"""SVD with the option of economy sized calculation
Calculate subspaces of X'X or XX' depending on the shape
of the matrix.
Good for extreme fat or thin matrices
:notes:
Numpy supports this by setting full_matrices=0
"""
has_arpack = True
try:
import arpack
except:
has_arpack = False
m, n = data.shape
if m>=n:
kernel = dot(data.T, data)
if has_arpack:
if amax==None:
amax = n
s, v = arpack.eigen_symmetric(kernel,k=amax, which='LM',
maxiter=200,tol=1e-5)
if has_sym:
if amax==None:
amax = n
pcrange = None
else:
pcrange = [n-amax, n]
s, v = symeig(kernel, range=pcrange, overwrite=True)
s = s[::-1].real
v = v[:,::-1].real
else:
u, s, vt = svd(kernel)
v = vt.T
s = sqrt(s)
u = dot(data, v)/s
else:
kernel = dot(data, data.T)
if has_sym:
if amax==None:
amax = m
pcrange = None
else:
pcrange = [m-amax, m]
s, u = symeig(kernel, range=pcrange, overwrite=True)
s = s[::-1]
u = u[:,::-1]
else:
u, s, vt = svd(kernel)
s = sqrt(s)
v = dot(data.T, u)/s
# some use of symeig returns the 0 imaginary part
return u.real, s.real, v.real
def vnorm(x):
# assume column arrays (or vectors)
return math.sqrt(dot(x.T, x))
def center(a, axis):
# 0 = col center, 1 = row center, 2 = double center
# -1 = nothing
# check if we have a vector
is_vec = len(a.shape)==1
if not is_vec:
is_vec = a.shape[0]==1 or a.shape[1]==1
if is_vec:
if axis==2:
warnings.warn("Double centering of vecor ignored, using ordinary centering")
if axis==-1:
mn = 0
else:
mn = a.mean()
return a - mn, mn
# !!!fixme: use broadcasting
if axis==-1:
mn = zeros((1,a.shape[1],))
#mn = tile(mn, (a.shape[0], 1))
elif axis==0:
mn = a.mean(0)[newaxis]
#mn = tile(mn, (a.shape[0], 1))
elif axis==1:
mn = a.mean(1)[:,newaxis]
#mn = tile(mn, (1, a.shape[1]))
elif axis==2:
mn = a.mean(0)[newaxis] + a.mean(1)[:,newaxis] - a.mean()
return a - mn , a.mean(0)[newaxis]
else:
raise IOError("input error: axis must be in [-1,0,1,2]")
return a - mn, mn
def scale(a, axis):
if axis==-1:
sc = zeros((a.shape[1],))
elif axis==0:
sc = a.std(0)
elif axis==1:
sc = a.std(1)[:,newaxis]
else:
raise IOError("input error: axis must be in [-1,0,1]")
return a - sc, sc
## #PCA CALCS
## % Calculate Q limit using unused eigenvalues
## temp = diag(s);
## if n < m
## emod = temp(lv+1:n,:);
## else
## emod = temp(lv+1:m,:);
## end
## th1 = sum(emod);
## th2 = sum(emod.^2);
## th3 = sum(emod.^3);
## h0 = 1 - ((2*th1*th3)/(3*th2^2));
## if h0 <= 0.0
## h0 = .0001;
## disp(' ')
## disp('Warning: Distribution of unused eigenvalues indicates that')
## disp(' you should probably retain more PCs in the model.')
## end
## q = th1*(((1.65*sqrt(2*th2*h0^2)/th1) + 1 + th2*h0*(h0-1)/th1^2)^(1/h0));
## disp(' ')
## disp('The 95% Q limit is')
## disp(q)
## if plots >= 1
## lim = [q q];
## plot(scl,res,scllim,lim,'--b')
## str = sprintf('Process Residual Q with 95 Percent Limit Based on %g PC Model',lv);
## title(str)
## xlabel('Sample Number')
## ylabel('Residual')
## pause
## end
## % Calculate T^2 limit using ftest routine
## if lv > 1
## if m > 300
## tsq = (lv*(m-1)/(m-lv))*ftest(.95,300,lv,2);
## else
## tsq = (lv*(m-1)/(m-lv))*ftest(.95,m-lv,lv,2);
## end
## disp(' ')
## disp('The 95% T^2 limit is')
## disp(tsq)
## % Calculate the value of T^2 by normalizing the scores to
## % unit variance and summing them up
## if plots >= 1.0
## temp2 = scores*inv(diag(ssq(1:lv,2).^.5));
## tsqvals = sum((temp2.^2)');
## tlim = [tsq tsq];
## plot(scl,tsqvals,scllim,tlim,'--b')
## str = sprintf('Value of T^2 with 95 Percent Limit Based on %g PC Model',lv);
## title(str)
## xlabel('Sample Number')
## ylabel('Value of T^2')
## end
## else
## disp('T^2 not calculated when number of latent variables = 1')
## tsq = 1.96^2;
## end