Projects/laydi
Projects
/
laydi
Archived
7
0
Fork 0
This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
laydi/fluents/lib/engines.py

394 lines
10 KiB
Python

"""Module contain algorithms for (burdensome) calculations.
There is no typechecking of any kind here, just focus on speed
"""
import math
from scipy.linalg import svd,inv
from scipy import dot,empty,eye,newaxis,zeros,sqrt,diag,\
apply_along_axis,mean,ones,randn,empty_like,outer,c_,\
rand,sum,cumsum,matrix
def pca(a, aopt, scale='scores', mode='normal'):
""" Principal Component Analysis model
mode:
-- fast : returns smallest dim scaled (T for n<=m, P for n>m )
-- normal : returns all model params and residuals after aopt comp
-- detailed : returns all model params and all residuals
"""
m, n = a.shape
if m*3>n:
u, s, v = esvd(a)
else:
u, s, vt = svd(a, full_matrices=0)
v = vt.T
eigvals = (1./m)*s
T = u*s
T = T[:,:aopt]
P = v[:,:aopt]
if scale=='loads':
tnorm = apply_along_axis(vnorm, 0, T)
T = T/tnorm
P = P*tnorm
if mode == 'fast':
return {'T':T, 'P':P}
if mode=='detailed':
"""Detailed mode returns residual matrix for all comp.
That is E, is a three-mode matrix: (amax, m, n) """
E = empty((aopt, m, n))
for ai in range(aopt):
e = a - dot(T[:,:ai+1], P[:,:ai+1].T)
E[ai,:,:] = e.copy()
else:
E = a - dot(T,P.T)
return {'T':T, 'P':P, 'E':E}
def pcr(a, b, aopt=2, scale='scores', mode='normal'):
"""Returns Principal component regression model."""
m, n = a.shape
try:
k, l = b.shape
except:
k = b.shape[0]
l = 1
B = empty((aopt, n, l))
U, s, Vt = svd(a, full_matrices=True)
T = U*s
T = T[:,:aopt]
P = Vt[:aopt,:].T
Q = dot(dot(inv(dot(T.T, T)), T.T), b).T
for i in range(aopt):
ti = T[:,:i+1]
r = dot(dot(inv(dot(ti.T,ti)), ti.T), b)
B[i] = dot(P[:,:i+1], r)
E = a - dot(T, P.T)
F = b - dot(T, Q.T)
return {'T':T, 'P':P,'Q': Q, 'B':B, 'E':E, 'F':F}
def pls(a, b, aopt=2, scale='scores', mode='normal', ab=None):
"""Kernel pls for tall/wide matrices.
Fast pls for calibration. Only inefficient for many Y-vars.
"""
m, n = a.shape
if ab!=None:
mm, l = m_shape(ab)
else:
k, l = m_shape(b)
W = empty((n, aopt))
P = empty((n, aopt))
R = empty((n, aopt))
Q = empty((l, aopt))
T = empty((m, aopt))
B = empty((aopt, n, l))
if ab==None:
ab = dot(a.T, b)
for i in range(aopt):
if ab.shape[1]==1:
w = ab.reshape(n, l)
else:
u, s, vh = svd(dot(ab.T, ab))
w = dot(ab, u[:,:1])
w = w/vnorm(w)
r = w.copy()
if i>0:
for j in range(0,i,1):
r = r - dot(P[:,j].T, w)*R[:,j][:,newaxis]
t = dot(a, r)
tt = vnorm(t)**2
p = dot(a.T, t)/tt
q = dot(r.T, ab).T/tt
ab = ab - dot(p, q.T)*tt
T[:,i] = t.ravel()
W[:,i] = w.ravel()
P[:,i] = p.ravel()
R[:,i] = r.ravel()
if mode=='fast' and i==aopt-1:
if scale=='loads':
tnorm = apply_along_axis(vnorm, 0, T)
T = T/tnorm
W = W*tnorm
return {'T':T, 'W':W}
Q[:,i] = q.ravel()
B[i] = dot(R[:,:i+1], Q[:,:i+1].T)
if mode=='detailed':
E = empty((aopt, m, n))
F = empty((aopt, k, l))
for i in range(1, aopt+1, 1):
E[i-1] = a - dot(T[:,:i], P[:,:i].T)
F[i-1] = b - dot(T[:,:i], Q[:,:i].T)
else:
E = a - dot(T[:,:aopt], P[:,:aopt].T)
F = b - dot(T[:,:aopt], Q[:,:aopt].T)
if scale=='loads':
tnorm = apply_along_axis(vnorm, 0, T)
T = T/tnorm
W = W*tnorm
Q = Q*tnorm
P = P*tnorm
return {'B':B, 'Q':Q, 'P':P, 'T':T, 'W':W, 'R':R, 'E':E, 'F':F}
def w_simpls(aat, b, aopt):
""" Simpls for wide matrices.
Fast pls for crossval, used in calc rmsep for wide X
There is no P,W. T is normalised
"""
bb = b.copy()
m, m = aat.shape
U = empty((m, aopt))
T = empty((m, aopt))
H = empty((m, aopt)) #just like W in simpls
PROJ = empty((m, aopt)) #just like R in simpls
for i in range(aopt):
u, s, vh = svd(dot(dot(b.T, aat), b), full_matrices=0)
u = dot(b, u[:,:1]) #y-factor scores
U[:,i] = u.ravel()
t = dot(aat, u)
t = t/vnorm(t)
T[:,i] = t.ravel()
h = dot(aat, t) #score-weights
H[:,i] = h.ravel()
PROJ[:,:i+1] = dot(T[:,:i+1], inv(dot(T[:,:i+1].T, H[:,:i+1])) )
if i<aopt:
b = b - dot(PROJ[:,:i+1], dot(H[:,:i+1].T,b) )
C = dot(bb.T, T)
return {'T':T, 'U':U, 'Q':C, 'H':H}
def bridge(a, b, aopt, scale='scores', mode='normal', r=0):
"""Undeflated Ridged svd(X'Y)
"""
m, n = a.shape
k, l = m_shape(b)
u, s, vt = svd(b, full_matrices=0)
g0 = dot(u*s, u.T)
g = (1 - r)*g0 + r*eye(m)
ag = dot(a.T, g)
u, s, vt = svd(ag, full_matrices=0)
W = u[:,:aopt]
K = vt[:aopt,:].T
T = dot(a, W)
tnorm = apply_along_axis(vnorm, 0, T) # norm of T-columns
if mode == 'fast':
if scale=='loads':
T = T/tnorm
W = W*tnorm
return {'T':T, 'W':W}
U = dot(g0, K) #fixme check this
Q = dot(b.T, dot(T, inv(dot(T.T, T)) ))
B = zeros((aopt, n, l), dtype='f')
for i in range(aopt):
B[i] = dot(W[:,:i+1], Q[:,:i+1].T)
if mode == 'detailed':
E = empty((aopt, m, n))
F = empty((aopt, k, l))
for i in range(aopt):
E[i] = a - dot(T[:,:i+1], W[:,:i+1].T)
F[i] = b - dot(a, B[i])
else: #normal
F = b - dot(a, B[-1])
E = a - dot(T, W.T)
if scale=='loads':
T = T/tnorm
W = W*tnorm
Q = Q*tnorm
return {'B':B, 'W':W, 'T':T, 'Q':Q, 'E':E, 'F':F, 'U':U, 'P':W}
def nipals_lpls(X, Y, Z, amax, alpha=.7, mean_ctr=[2, 0, 1], mode='normal', scale='scores', verbose=False):
""" L-shaped Partial Least Sqaures Regression by the nipals algorithm.
(X!Z)->Y
:input:
X : data matrix (m, n)
Y : data matrix (m, l)
Z : data matrix (n, o)
:output:
T : X-scores
W : X-weights/Z-weights
P : X-loadings
Q : Y-loadings
U : X-Y relation
L : Z-scores
K : Z-loads
B : Regression coefficients X->Y
b0: Regression coefficient intercept
evx : X-explained variance
evy : Y-explained variance
evz : Z-explained variance
:Notes:
"""
if mean_ctr!=None:
xctr, yctr, zctr = mean_ctr
X, mnX = center(X, xctr)
Y, mnY = center(Y, xctr)
Z, mnZ = center(Z, zctr)
varX = pow(X, 2).sum()
varY = pow(Y, 2).sum()
varZ = pow(Z, 2).sum()
m, n = X.shape
k, l = Y.shape
u, o = Z.shape
# initialize
U = empty((k, amax))
Q = empty((l, amax))
T = empty((m, amax))
W = empty((n, amax))
P = empty((n, amax))
K = empty((o, amax))
L = empty((u, amax))
var_x = empty((amax,))
var_y = empty((amax,))
var_z = empty((amax,))
for a in range(amax):
if verbose:
print "\n Working on comp. %s" %a
u = Y[:,:1]
diff = 1
MAX_ITER = 100
lim = 1e-5
niter = 0
while (diff>lim and niter<MAX_ITER):
niter += 1
u1 = u.copy()
w = dot(X.T, u)
w = w/sqrt(dot(w.T, w))
l = dot(Z, w)
k = dot(Z.T, l)
k = k/sqrt(dot(k.T, k))
w = alpha*k + (1-alpha)*w
w = w/sqrt(dot(w.T, w))
t = dot(X, w)
c = dot(Y.T, t)
c = c/sqrt(dot(c.T, c))
u = dot(Y, c)
diff = abs(u1 - u).max()
if verbose:
print "Converged after %s iterations" %niter
tt = dot(t.T, t)
p = dot(X.T, t)/tt
q = dot(Y.T, t)/tt
l = dot(Z, w)
U[:,a] = u.ravel()
W[:,a] = w.ravel()
P[:,a] = p.ravel()
T[:,a] = t.ravel()
Q[:,a] = q.ravel()
L[:,a] = l.ravel()
K[:,a] = k.ravel()
X = X - dot(t, p.T)
Y = Y - dot(t, q.T)
Z = (Z.T - dot(w, l.T)).T
var_x[a] = pow(X, 2).sum()
var_y[a] = pow(Y, 2).sum()
var_z[a] = pow(Z, 2).sum()
B = dot(dot(W, inv(dot(P.T, W))), Q.T)
b0 = mnY - dot(mnX, B)
# variance explained
evx = 100.0*(1 - var_x/varX)
evy = 100.0*(1 - var_y/varY)
evz = 100.0*(1 - var_z/varZ)
if scale=='loads':
tnorm = apply_along_axis(vnorm, 0, T)
T = T/tnorm
W = W*tnorm
Q = Q*tnorm
knorm = apply_along_axis(vnorm, 0, K)
L = L*knorm
K = K/knorm
return {'T':T, 'W':W, 'P':P, 'Q':Q, 'U':U, 'L':L, 'K':K, 'B':B, 'b0':b0, 'evx':evx, 'evy':evy, 'evz':evz}
########### Helper routines #########
def m_shape(array):
return matrix(array).shape
def esvd(data, economy=1):
"""SVD with the option of economy sized calculation
Calculate subspaces of X'X or XX' depending on the shape
of the matrix.
Good for extreme fat or thin matrices
Numpy supports this by setting full_matrices=0
"""
m, n = data.shape
if m>=n:
data = dot(data.T, data)
u, s, vt = svd(data)
u = dot(data, vt.T)
v = vt.T
for i in xrange(n):
s[i] = vnorm(u[:,i])
u[:,i] = u[:,i]/s[i]
else:
data = dot(data, data.T)
data = (data + data.T)/2.0
u, s, vt = svd(data)
v = dot(u.T, data)
for i in xrange(m):
s[i] = vnorm(v[i,:])
v[i,:] = v[i,:]/s[i]
return u, s, v.T
def vnorm(x):
# assume column arrays (or vectors)
return math.sqrt(dot(x.T, x))
def center(a, axis):
# 0 = col center, 1 = row center, 2 = double center
# -1 = nothing
if axis==-1:
mn = zeros((a.shape[1],))
elif axis==0:
mn = a.mean(0)
elif axis==1:
mn = a.mean(1)[:,newaxis]
elif axis==2:
mn = a.mean(0) + a.mean(1)[:,newaxis] - a.mean()
else:
raise IOError("input error: axis must be in [-1,0,1,2]")
return a - mn, mn