This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
laydi/system/dataset.py

138 lines
4.7 KiB
Python

import logger
from scipy import array,take,asarray,shape,nonzero
import project
from itertools import izip
class Dataset:
"""Dataset base class.
A Dataset is an n-way array with defined string identifiers across
all dimensions.
"""
def __init__(self, input_array, def_list, name="Unnamed data"):
self._name = name
self._data = asarray(input_array)
dims = shape(self._data)
self.def_list = def_list
self._ids_set = set()
self.ids={}
self._dim_num = {}
self._dim_names = []
if len(dims)==1: # a vector is defined to be column vector!
self.dims = (dims[0],1)
else:
self.dims = dims
if len(def_list)!=len(self.dims):
raise ValueError,"array dims and identifyer mismatch"
for axis,(dim_name,ids) in enumerate(def_list):
enum_ids = {}
#if dim_name not in project.c_p.dim_names:
# dim_name = project.c_p.suggest_dim_name(dim_name)
if not ids:
logger.log('debug','Creating identifiers along: '+ str(dim_name))
ids = self._create_identifiers(axis)
for num,name in enumerate(ids):
enum_ids[name] = num
self.ids[dim_name] = enum_ids
self._ids_set = self._ids_set.union(set(ids))
self._dim_num[dim_name] = axis
self._dim_names.append(dim_name)
for (dimname, ids), d in izip(def_list,self.dims): #check that data and labels match
if len(self.ids[dimname]) != d:
raise ValueError,"dim size and identifyer mismatch"
def get_name(self):
return self._name
def get_dim_names(self):
return self._dim_names
def names(self,axis=0):
"""Returns identifier names of a dimension.
NB: sorted by values!
OK? necessary?"""
if type(axis)==int:
dim_name = self._dim_names[axis]
elif type(axis)==str:
dim_name = axis
if dim_name not in self._dim_names:
raise ValueError, dim_name + " not a dimension in dataset"
items = self.ids[dim_name].items()
backitems=[ [v[1],v[0]] for v in items]
backitems.sort()
sorted_ids=[ backitems[i][1] for i in range(0,len(backitems))]
return sorted_ids
def extract_data(self,ids,dim_name):
"""Extracts data along a dimension by identifiers"""
new_def_list = self.def_list[:]
ids_index = [self.ids[dim_name][id_name] for id_name in ids]
dim_number = self._dim_num[dim_name]
try:
out_data = take(self._data,ids_index,axis=dim_number)
except:
raise ValueError
new_def_list[dim_number][1] = ids
extracted_data = Dataset(out_data,def_list=new_def_list,parents=self.parents)
return extracted_data
def _create_identifiers(self,axis):
"""Creates identifiers along an axis"""
n_dim = self.dims[axis]
return [str(axis) + '_' + str(i) for i in range(n_dim)]
def extract_id_from_index(self,dim_name,index):
"""Returns a set of ids from array/list of indexes."""
dim_ids = self.ids[dim_name]
if type(index)==int:
index = [index]
return set([id for id,ind in dim_ids.items() if ind in index])
def extract_index_from_id(self,dim_name,id):
"""Returns an array of indexes from a set/list of identifiers
(or a single id)"""
dim_ids = self.ids[dim_name]
return array([ind for name,ind in dim_ids.items() if name in id])
class CategoryDataset(Dataset):
def __init__(self,array,def_list):
Dataset.__init__(self,array,def_list)
def get_elements_by_category(self,dim,category):
"""Returns all elements along input dim belonging to category.
Assumes a two-dim category data only!
"""
if type(category)!=list:
raise ValueError, "category must be list"
gene_ids = []
axis_dim = self._dim_num[dim]
cat_index = self.extract_index_from_id(category)
for ind in cat_index:
if axis_dim==0:
gene_indx = nonzero(self._data[:,ind])
elif axis_dim==1:
gene_indx = nonzero(self._data[ind,:])
else:
ValueError, "Only support for 2-dim data"
gene_ids.append(self.extract_id_from_index(dim,gene_index))
return gene_ids
class Selection:
"""Handles selected identifiers along each dimension of a dataset"""
def __init__(self):
self.current_selection={}