304 lines
10 KiB
Python
304 lines
10 KiB
Python
"""Specialised plots for functions defined in blmfuncs.py.
|
|
|
|
fixme:
|
|
-- If scatterplot is not inited with a colorvector there will be no
|
|
colorbar, but when adding colors the colorbar shoud be created.
|
|
"""
|
|
|
|
from matplotlib import cm
|
|
import gtk
|
|
import fluents
|
|
from fluents import plots
|
|
import scipy
|
|
from scipy import dot,sum,diag,arange,log,mean,newaxis,sqrt
|
|
|
|
class BlmScatterPlot(plots.ScatterPlot):
|
|
"""Scatter plot used for scores and loadings in bilinear models."""
|
|
|
|
def __init__(self, title, model, absi=0, ordi=1, part_name='T', color_by=None):
|
|
if model.model.has_key(part_name)!=True:
|
|
raise ValueError("Model part: %s not found in model" %mod_param)
|
|
self._T = model.model[part_name]
|
|
if self._T.shape[1]==1:
|
|
logger.log('notice', 'Scores have only one component')
|
|
absi= ordi = 0
|
|
self._absi = absi
|
|
self._ordi = ordi
|
|
self._colorbar = None
|
|
self._cmap = cm.jet
|
|
dataset_1 = model.as_dataset(part_name)
|
|
id_dim = dataset_1.get_dim_name(0)
|
|
sel_dim = dataset_1.get_dim_name(1)
|
|
id_1, = dataset_1.get_identifiers(sel_dim, [absi])
|
|
id_2, = dataset_1.get_identifiers(sel_dim, [ordi])
|
|
|
|
col = 'b'
|
|
if model.model.has_key(color_by):
|
|
col = model.model[color_by].ravel()
|
|
|
|
plots.ScatterPlot.__init__(self, dataset_1, dataset_1, id_dim, sel_dim, id_1, id_2 ,c=col ,s=40 , name=title)
|
|
|
|
self.sc.set_cmap(self._cmap)
|
|
self.add_pc_spin_buttons(self._T.shape[1], absi, ordi)
|
|
self._key_press = self.canvas.mpl_connect(
|
|
'key_press_event', self._on_key_press)
|
|
|
|
|
|
def _update_color_from_dataset(self, data):
|
|
"""Overriding scatter for testing of colormaps.
|
|
"""
|
|
is_category = False
|
|
array = data.asarray()
|
|
#only support for 2d-arrays:
|
|
try:
|
|
m, n = array.shape
|
|
except:
|
|
raise ValueError, "No support for more than 2 dimensions."
|
|
# is dataset a vector or matrix?
|
|
if not n==1:
|
|
# we have a category dataset
|
|
if isinstance(data, fluents.dataset.CategoryDataset):
|
|
is_category = True
|
|
map_vec = scipy.dot(array, scipy.diag(scipy.arange(n))).sum(1)
|
|
else:
|
|
map_vec = array.sum(1)
|
|
else:
|
|
map_vec = array.ravel()
|
|
|
|
# update facecolors
|
|
self.sc.set_array(map_vec)
|
|
self.sc.set_clim(map_vec.min(), map_vec.max())
|
|
if is_category:
|
|
cmap = cm.Paired
|
|
else:
|
|
cmap = cm.jet
|
|
|
|
self.sc.set_cmap(cmap)
|
|
self.sc.update_scalarmappable() #sets facecolors from array
|
|
self.canvas.draw()
|
|
|
|
def _on_key_press(self, event):
|
|
if event.key=='c':
|
|
self.toggle_colorbar()
|
|
|
|
def set_facecolor(self, colors):
|
|
"""Set patch facecolors.
|
|
"""
|
|
pass
|
|
|
|
def set_alphas(self, alphas):
|
|
"""Set alpha channel for all patches."""
|
|
pass
|
|
|
|
def set_sizes(self, sizes):
|
|
"""Set patch sizes."""
|
|
pass
|
|
|
|
def toggle_colorbar(self):
|
|
if self._colorbar==None:
|
|
if self.sc._A!=None: # we need colormapping
|
|
# get axes original position
|
|
self._ax_last_pos = self.axes.get_position()
|
|
self._colorbar = self.fig.colorbar(self.sc)
|
|
self._colorbar.draw_all()
|
|
self.canvas.draw()
|
|
else:
|
|
# remove colorbar
|
|
# remove, axes, observers, colorbar instance, and restore viewlims
|
|
cb, ax = self.sc.colorbar
|
|
self.fig.delaxes(ax)
|
|
self.sc.observers = [obs for obs in self.sc.observers if obs !=self._colorbar]
|
|
self._colorbar = None
|
|
self.sc.colorbar = None
|
|
self.axes.set_position(self._ax_last_pos)
|
|
self.canvas.draw()
|
|
|
|
def add_pc_spin_buttons(self, amax, absi, ordi):
|
|
sb_a = gtk.SpinButton(climb_rate=1)
|
|
sb_a.set_range(1, amax)
|
|
sb_a.set_value(absi+1)
|
|
sb_a.set_increments(1, 5)
|
|
sb_a.connect('value_changed', self.set_absicca)
|
|
sb_o = gtk.SpinButton(climb_rate=1)
|
|
sb_o.set_range(1, amax)
|
|
sb_o.set_value(ordi+1)
|
|
sb_o.set_increments(1, 5)
|
|
sb_o.connect('value_changed', self.set_ordinate)
|
|
hbox = gtk.HBox()
|
|
gtk_label_a = gtk.Label("A:")
|
|
gtk_label_o = gtk.Label(" O:")
|
|
toolitem = gtk.ToolItem()
|
|
toolitem.set_expand(False)
|
|
toolitem.set_border_width(2)
|
|
toolitem.add(hbox)
|
|
hbox.pack_start(gtk_label_a)
|
|
hbox.pack_start(sb_a)
|
|
hbox.pack_start(gtk_label_o)
|
|
hbox.pack_start(sb_o)
|
|
self._toolbar.insert(toolitem, -1)
|
|
toolitem.set_tooltip(self._toolbar.tooltips, "Set Principal component")
|
|
self._toolbar.show_all() #do i need this?
|
|
|
|
def set_absicca(self, sb):
|
|
self._absi = sb.get_value_as_int() - 1
|
|
xy = self._T[:,[self._absi, self._ordi]]
|
|
self.xaxis_data = xy[:,0]
|
|
self.yaxis_data = xy[:,1]
|
|
self.sc._offsets = xy
|
|
self.selection_collection._offsets = xy
|
|
self.canvas.draw_idle()
|
|
pad = abs(self.xaxis_data.min()-self.xaxis_data.max())*0.05
|
|
new_lims = (self.xaxis_data.min()+pad, self.xaxis_data.max()+pad)
|
|
self.axes.set_xlim(new_lims, emit=True)
|
|
self.canvas.draw_idle()
|
|
|
|
def set_ordinate(self, sb):
|
|
self._ordi = sb.get_value_as_int() - 1
|
|
xy = self._T[:,[self._absi, self._ordi]]
|
|
self.xaxis_data = xy[:,0]
|
|
self.yaxis_data = xy[:,1]
|
|
self.sc._offsets = xy
|
|
self.selection_collection._offsets = xy
|
|
pad = abs(self.yaxis_data.min()-self.yaxis_data.max())*0.05
|
|
new_lims = (self.yaxis_data.min()+pad, self.yaxis_data.max()+pad)
|
|
self.axes.set_ylim(new_lims, emit=True)
|
|
self.canvas.draw_idle()
|
|
|
|
def show_labels(self, index=None):
|
|
if self._text_labels == None:
|
|
x = self.xaxis_data
|
|
y = self.yaxis_data
|
|
self._text_labels = {}
|
|
for name, n in self.dataset_1[self.current_dim].items():
|
|
txt = self.axes.text(x[n],y[n], name)
|
|
txt.set_visible(False)
|
|
self._text_labels[n] = txt
|
|
if index!=None:
|
|
self.hide_labels()
|
|
for indx,txt in self._text_labels.items():
|
|
if indx in index:
|
|
txt.set_visible(True)
|
|
self.canvas.draw()
|
|
|
|
def hide_labels(self):
|
|
for txt in self._text_labels.values():
|
|
txt.set_visible(False)
|
|
self.canvas.draw()
|
|
|
|
|
|
class PcaScorePlot(BlmScatterPlot):
|
|
def __init__(self, model, absi=0, ordi=1):
|
|
title = "Pca scores (%s)" %model._dataset['X'].get_name()
|
|
BlmScatterPlot.__init__(self, title, model, absi, ordi, 'T')
|
|
|
|
|
|
class PcaLoadingPlot(BlmScatterPlot):
|
|
def __init__(self, model, absi=0, ordi=1):
|
|
title = "Pca loadings (%s)" %model._dataset['X'].get_name()
|
|
BlmScatterPlot.__init__(self, title, model, absi, ordi, part_name='P', color_by='p_tsq')
|
|
|
|
|
|
class PlsScorePlot(BlmScatterPlot):
|
|
def __init__(self, model, absi=0, ordi=1):
|
|
title = "Pls scores (%s)" %model._dataset['X'].get_name()
|
|
BlmScatterPlot.__init__(self, title, model, absi, ordi, 'T')
|
|
|
|
|
|
class PlsLoadingPlot(BlmScatterPlot):
|
|
def __init__(self, model, absi=0, ordi=1):
|
|
title = "Pls loadings (%s)" %model._dataset['X'].get_name()
|
|
BlmScatterPlot.__init__(self, title, model, absi, ordi, part_name='P', color_by='w_tsq')
|
|
|
|
|
|
class LineViewXc(plots.LineViewPlot):
|
|
"""A line view of centered raw data
|
|
"""
|
|
def __init__(self, model, name='Profiles'):
|
|
# copy, center, plot
|
|
x = model._dataset['X'].copy()
|
|
x._array = x._array - mean(x._array,0)[newaxis]
|
|
plots.LineViewPlot.__init__(self, x, 1, None, name)
|
|
|
|
|
|
class ParalellCoordinates(plots.Plot):
|
|
"""Parallell coordinates for score loads with many comp.
|
|
"""
|
|
def __init__(self, model, p='loads'):
|
|
pass
|
|
|
|
|
|
class PlsQvalScatter(plots.ScatterPlot):
|
|
"""A vulcano like plot of loads vs qvals
|
|
"""
|
|
def __init__(self, model, pc=0):
|
|
if not model.model.has_key('w_tsq'):
|
|
return None
|
|
self._W = model.model['P']
|
|
dataset_1 = model.as_dataset('P')
|
|
dataset_2 = model.as_dataset('w_tsq')
|
|
id_dim = dataset_1.get_dim_name(0) #genes
|
|
sel_dim = dataset_1.get_dim_name(1) #_comp
|
|
sel_dim_2 = dataset_2.get_dim_name(1) #_zero_dim
|
|
id_1, = dataset_1.get_identifiers(sel_dim, [0])
|
|
id_2, = dataset_2.get_identifiers(sel_dim_2, [0])
|
|
if model.model.has_key('w_tsq'):
|
|
col = model.model['w_tsq'].ravel()
|
|
#col = normalise(col)
|
|
else:
|
|
col = 'g'
|
|
plots.ScatterPlot.__init__(self, dataset_1, dataset_2,
|
|
id_dim, sel_dim, id_1, id_2,
|
|
c=col, s=20, sel_dim_2=sel_dim_2,
|
|
name='Load Volcano')
|
|
|
|
|
|
class PredictionErrorPlot(plots.Plot):
|
|
"""A boxplot of prediction error vs. comp. number.
|
|
"""
|
|
def __init__(self, model, name="Prediction Error"):
|
|
if not model.model.has_key('sep'):
|
|
logger.log('notice', 'Model has no calculations of sep')
|
|
return None
|
|
plots.Plot.__init__(self, name)
|
|
self._frozen = True
|
|
self.current_dim = 'johndoe'
|
|
self.axes = self.fig.add_subplot(111)
|
|
|
|
# draw
|
|
sep = model.model['sep']
|
|
aopt = model.model['aopt']
|
|
bx_plot_lines = self.axes.boxplot(sqrt(sep))
|
|
aopt_marker = self.axes.axvline(aopt, linewidth=10,
|
|
color='r',zorder=0,
|
|
alpha=.5)
|
|
|
|
# add canvas
|
|
self.add(self.canvas)
|
|
self.canvas.show()
|
|
|
|
def set_current_selection(self, selection):
|
|
pass
|
|
|
|
|
|
class InfluencePlot(plots.ScatterPlot):
|
|
"""
|
|
"""
|
|
pass
|
|
|
|
|
|
class RMSEPPlot(plots.BarPlot):
|
|
def __init__(self, model, name="RMSEP"):
|
|
if not model.model.has_key('rmsep'):
|
|
logger.log('notice', 'Model has no calculations of sep')
|
|
return
|
|
dataset = model.as_dataset('rmsep')
|
|
plots.BarPlot.__init__(self, dataset, name=name)
|
|
|
|
|
|
def normalise(x):
|
|
"""Scale vector x to [0,1]
|
|
"""
|
|
x = x - x.min()
|
|
x = x/x.max()
|
|
return x
|