Projects/laydi
Projects
/
laydi
Archived
7
0
Fork 0
This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
laydi/workflows/demo.py

582 lines
21 KiB
Python

import sys,os
import os.path
import webbrowser
import cPickle
import scipy
import networkx as nx
from fluents import logger,plots,workflow,dataset,main
from fluents.lib import blmfuncs,nx_utils,cx_utils
import gobrowser
class SmallTestWorkflow(workflow.Workflow):
name = 'Demo'
ident = 'demo'
description = 'A small test workflow for gene expression analysis.'
chip = 'hgu'
def __init__(self):
workflow.Workflow.__init__(self)
# DATA IMPORT
load = workflow.Stage('load', 'Data')
load_small = LoadDataFunction('load-small', 'Small', self)
load.add_function(load_small)
load_medium = LoadDataFunction('load-geneid', 'GeneID', self, 'geneid')
load.add_function(load_medium)
load_medium = LoadDataFunction('load-full', 'FullChip', self, 'full')
load.add_function(load_medium)
self.add_stage(load)
# NETWORK PREPROCESSING
#net = workflow.Stage('net', 'Network integration')
#net.add_function(DiffKernelFunction())
#net.add_function(ModKernelFunction())
#self.add_stage(net)
# Models
model = workflow.Stage('models', 'Models')
model.add_function(blmfuncs.PCA())
model.add_function(blmfuncs.PLS())
model.add_function(SAM())
self.add_stage(model)
query = workflow.Stage('query', 'Gene Query')
query.add_function(NCBIQuery())
query.add_function(KEGGQuery())
query.add_function(SubgraphQuery())
self.add_stage(query)
# Background knowledge
go = workflow.Stage('go', 'Gene Ontology')
go.add_function(gobrowser.PlotDagFunction())
go.add_function(GoEnrichment())
go.add_function(GoEnrichmentCond())
go.add_function(MapGO2Gene())
go.add_function(MapGene2GO())
self.add_stage(go)
# EXTRA PLOTS
#plt = workflow.Stage('net', 'Network')
#plt.add_function(nx_analyser.KeggNetworkAnalyser())
#self.add_stage(plt)
logger.log('debug', 'Small test workflow is now active')
class LoadDataFunction(workflow.Function):
"""Loads all datasets in a given directory."""
def __init__(self, ident, label, wf, dir=''):
workflow.Function.__init__(self, ident, label)
self._dir = dir
self._wf = wf
def run(self):
path = os.path.join(main.options.datadir, self._wf.ident, self._dir)
files = os.listdir(path)
out = []
for fn in files:
if fn.endswith('.ftsv'):
out.append(dataset.read_ftsv(os.path.join(path, fn)))
return out
##### WORKFLOW SPECIFIC FUNCTIONS ######
class SAM(workflow.Function):
def __init__(self, id='sam', name='SAM'):
workflow.Function.__init__(self, id, name)
def run(self, x, y):
n_iter = 50 #B
alpha = 0.01 #cut off on qvals
###############
# Main function call
# setup prelimenaries
import rpy
rpy.r.library("siggenes")
rpy.r.library("multtest")
cl = scipy.dot(y.asarray(), scipy.diag(scipy.arange(y.shape[1]))).sum(1)
data = x.asarray().T
sam = rpy.r.sam(data, cl=cl, B=n_iter, var_equal=False,med=False,s0=scipy.nan,rand=scipy.nan)
qvals = scipy.asarray(rpy.r.slot(sam, "p.value"))
pvals = scipy.asarray(rpy.r.slot(sam, "q.value"))
sam_index = (qvals<alpha).nonzero()[0]
# Update selection object
dim_name = x.get_dim_name(1)
sam_selection = x.get_identifiers(dim_name, indices=sam_index)
main.project.set_selection(dim_name, sam_selection)
sel = dataset.Selection('SAM selection')
sel.select(dim_name, sam_selection)
logger.log('notice','Number of significant varibles (SAM): %s' %len(sam_selection))
# ## OUTPUT ###
xcolname = x.get_dim_name(1) # genes
x_col_ids = [xcolname, x.get_identifiers(xcolname, sorted=True)]
sing_id = ['_john', ['0']] #singleton
D_qvals = dataset.Dataset(qvals, (x_col_ids, sing_id), name='q_vals')
D_pvals = dataset.Dataset(pvals, (x_col_ids, sing_id), name='p_vals')
# plots
s_indx = qvals.flatten().argsort()
s_ids = [x_col_ids[0],[x_col_ids[1][i] for i in s_indx]]
xindex = scipy.arange(len(qvals))
qvals_s = qvals.take(s_indx)
D_qs = dataset.Dataset(qvals_s, (s_ids, sing_id), name="sorted qvals")
Dind = dataset.Dataset(xindex, (s_ids, sing_id), name="dum")
st = plots.ScatterPlot(D_qs, Dind, 'gene_ids', '_john', '0', '0', s=10, name='SAM qvals')
return [D_qvals, D_pvals, D_qs, st, sel]
class DiffKernelFunction(workflow.Function):
def __init__(self):
workflow.Function.__init__(self, 'diffkernel', 'Diffusion')
def run(self, x, a):
"""x is gene expression data, a is the network.
"""
#sanity check:
g = a.asnetworkx()
genes = x.get_identifiers(x.get_dim_name(1), sorted=True)
W = nx.adj_matrix(g, nodelist=genes)
X = x.asarray()
Xc, mn_x = cx_utils.mat_center(X, ret_mn=True)
out = []
alpha = 1.0
beta = 1.0
K = nx_utils.K_diffusion(W, alpha=alpha, beta=beta,normalised=True)
Xp = scipy.dot(Xc, K) + mn_x
# dataset
row_ids = (x.get_dim_name(0),
x.get_identifiers(x.get_dim_name(0),
sorted=True))
col_ids = (x.get_dim_name(1),
x.get_identifiers(x.get_dim_name(1),
sorted=True))
xout = dataset.Dataset(Xp,
(row_ids, col_ids),
name=x.get_name()+'_diff'+str(alpha))
out.append(xout)
return out
class ModKernelFunction(workflow.Function):
def __init__(self):
workflow.Function.__init__(self, 'mokernel', 'Modularity')
def run(self,x,a):
X = x.asarray()
g = a.asnetworkx()
genes = x.get_identifiers(x.get_dim_name(1), sorted=True)
W = nx.adj_matrix(g, nodelist=genes)
out=[]
alpha=.2
Xc,mn_x = cx_utils.mat_center(X, ret_mn=True)
K = nx_utils.K_modularity(W, alpha=alpha)
Xp = scipy.dot(Xc, K)
Xp = Xp + mn_x
# dataset
row_ids = (x.get_dim_name(0),
x.get_identifiers(x.get_dim_name(0),
sorted=True))
col_ids = (x.get_dim_name(1),
x.get_identifiers(x.get_dim_name(1),
sorted=True))
xout = dataset.Dataset(Xp,
(row_ids,col_ids),
name=x.get_name()+'_mod'+str(alpha))
out.append(xout)
return out
class NCBIQuery(workflow.Function):
def __init__(self, gene_id_name='gene_ids'):
self._gene_id_name = gene_id_name
workflow.Function.__init__(self, 'query', 'NCBI')
def run(self):
selection = main.project.get_selection()
if not selection.has_key(self._gene_id_name):
logger.log("notice", "Expected gene ids: %s, but got: %s" %(self._gene_id_name, selection.keys()))
return None
if len(selection[self._gene_id_name])==0:
logger.log("notice", "No selected genes to query")
return None
base = 'http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?'
options = {r'&db=' : 'gene',
r'&cmd=' : 'retrieve',
r'&dopt=' : 'full_report'}
gene_str = ''.join([gene + "+" for gene in selection[self._gene_id_name]])
options[r'&list_uids='] = gene_str[:-1]
opt_str = ''.join([key+value for key,value in options.items()])
web_str = base + opt_str
webbrowser.open(web_str)
class KEGGQuery(workflow.Function):
def __init__(self, org='hsa', gene_id_name='gene_ids'):
self._org=org
self._gene_id_name = gene_id_name
workflow.Function.__init__(self, 'query', 'KEGG')
def run(self, selection):
if not selection.has_key(self._gene_id_name):
logger.log("notice", "Expected gene ids: %s, but got. %s" %(self._gene_id_name, selection.keys()))
return None
if len(selection[self._gene_id_name])==0:
logger.log("notice", "No selected genes to query")
return None
base = r'http://www.genome.jp/dbget-bin/www_bget?'
gene_str = ''.join([gene + "+" for gene in selection[self._gene_id_name]])
gene_str = gene_str[:-1]
gene_str = self._org + "+" + gene_str
web_str = base + gene_str
webbrowser.open(web_str)
class GoEnrichment(workflow.Function):
def __init__(self):
workflow.Function.__init__(self, 'goenrich', 'Go Enrichment')
def run(self, data):
import rpy
rpy.r.library("GOstats")
# Get universe
# Here, we are using a defined dataset to represent the universe
if not 'gene_ids' in data:
logger.log('notice', 'No dimension called [gene_ids] in dataset: %s' %data.get_name())
return
universe = list(data.get_identifiers('gene_ids'))
logger.log('notice', 'Universe consists of %s gene ids from %s' %(len(universe), data.get_name()))
# Get current selection and validate
curr_sel = main.project.get_selection()
selected_genes = list(curr_sel['gene_ids'])
if len(selected_genes)==0:
logger.log('notice', 'This function needs a current selection!')
return
# Hypergeometric parameter object
pval_cutoff = 0.9999
cond = False
test_direction = 'over'
params = rpy.r.new("GOHyperGParams",
geneIds=selected_genes,
annotation="hgu133a",
ontology="BP",
pvalueCutoff=pval_cutoff,
conditional=cond,
testDirection=test_direction
)
# run test
# result.keys(): ['Count', 'Term', 'OddsRatio', 'Pvalue', 'ExpCount', 'GOBPID', 'Size']
result = rpy.r.summary(rpy.r.hyperGTest(params))
# dataset
terms = result['GOBPID']
pvals = scipy.log(scipy.asarray(result['Pvalue']))
row_ids = ('go-terms', terms)
col_ids = ('_john', ['_doe'])
xout = dataset.Dataset(pvals,
(row_ids, col_ids),
name='P values (enrichment)')
return [xout]
class GoEnrichmentCond(workflow.Function):
""" Enrichment conditioned on dag structure."""
def __init__(self):
workflow.Function.__init__(self, 'goenrich', 'Go Cond. Enrich.')
def run(self, data):
import rpy
rpy.r.library("GOstats")
# Get universe
# Here, we are using a defined dataset to represent the universe
if not 'gene_ids' in data:
logger.log('notice', 'No dimension called [gene_ids] in dataset: %s', data.get_name())
return
universe = list(data.get_identifiers('gene_ids'))
logger.log('notice', 'Universe consists of %s gene ids from %s' %(len(universe), data.get_name()))
# Get current selection and validate
curr_sel = main.project.get_selection()
selected_genes = list(curr_sel['gene_ids'])
if len(selected_genes)==0:
logger.log('notice', 'This function needs a current selection!')
return
# Hypergeometric parameter object
pval_cutoff = 1
cond = True
test_direction = 'over'
params = rpy.r.new("GOHyperGParams",
geneIds=selected_genes,
annotation="hgu133a",
ontology="BP",
pvalueCutoff=pval_cutoff,
conditional=cond,
testDirection=test_direction
)
# run test
# result.keys(): ['Count', 'Term', 'OddsRatio', 'Pvalue', 'ExpCount', 'GOBPID', 'Size']
result = rpy.r.summary(rpy.r.hyperGTest(params))
# dataset
terms = result['GOBPID']
pvals = scipy.log(scipy.asarray(result['Pvalue']))
row_ids = ('go-terms', terms)
col_ids = ('_john', ['_doe'])
xout = dataset.Dataset(pvals,
(row_ids, col_ids),
name='P values (enrichment)')
return [xout]
class MapGene2GO(workflow.Function):
def __init__(self, ont='bp', gene_id_name='gene_ids'):
self._ont = ont
self._gene_id_name = gene_id_name
workflow.Function.__init__(self, 'gene2go', 'gene->GO')
# load data at init
try:
fname = "/home/flatberg/fluents/data/gene2go.pcl"
self._gene2go = cPickle.load(open(fname))
except:
logger.log("notice", "could not load mapping")
def run(self):
selection = main.project.get_selection()
if not selection.has_key(self._gene_id_name):
logger.log("notice", "Expected gene ids: %s, but got. %s" %(self._gene_id_name, selection.keys()))
return None
if len(selection[self._gene_id_name])==0:
logger.log("notice", "No selected genes to query")
return None
gene_ids = selection[self._gene_id_name]
go_ids = set()
for gene in gene_ids:
go_ids_new = self._gene2go.get(gene, [])
if not go_ids_new:
logger.log("notice", "Could not find any goterms for %s" %gene)
go_ids.update(self._gene2go.get(gene, []))
main.project.set_selection('go-terms', go_ids)
logger.log("notice", "GO terms updated")
class MapGO2Gene(workflow.Function):
def __init__(self, ont='bp', gene_id_name='go-terms'):
self._ont = ont
self._gene_id_name = gene_id_name
workflow.Function.__init__(self, 'go2gene', 'GO->gene')
# load data at init
try:
fname = "/home/flatberg/fluents/data/go2gene.pcl"
self._go2gene = cPickle.load(open(fname))
except:
logger.log("notice", "could not load mapping")
def run(self):
selection = main.project.get_selection()
if not selection.has_key(self._gene_id_name):
logger.log("notice", "Expected gene ids: %s, but got. %s" %(self._gene_id_name, selection.keys()))
return None
if len(selection[self._gene_id_name])==0:
logger.log("notice", "No selected genes to query")
return None
go_ids = selection[self._gene_id_name]
gene_ids = set()
for go in go_ids:
if not self._go2gene.get(go,[]):
logger.log("notice", "Could not find any gene ids for %s" %go)
gene_ids.update(self._go2gene.get(go,[]))
main.project.set_selection('gene_ids', gene_ids)
logger.log("notice", "GO terms updated")
class SubgraphQuery(workflow.Function):
def __init__(self, graph='kegg', dim='gene_ids'):
self._gtype = graph
self._dim = dim
workflow.Function.__init__(self, 'keggraph', 'KeggGraph')
def run(self, Dw, DA):
max_edge_ratio = .20
max_cov_ratio = .25
neigh_type = 'cov'
neigh_type = 'cosine'
#neigh_type = 'heat'
# 1.) Operate on a subset selection
selection = main.project.get_selection()
if not selection.has_key(self._dim):
logger.log("notice", "Expected gene ids: %s, but got. %s" %(self._dim, selection.keys()))
return None
if len(selection[self._dim]) == 0:
logger.log("notice", "No selected genes to query, using all")
Dw = Dw.subdata(self._dim, Dw.get_identifiers(self._dim)[:100])
else:
Dw = Dw.subdata(self._dim, selection[self._dim])
# 2.) Pairwise goodness in loading space
indices = self._pairsim(Dw)
idents1 = Dw.get_identifiers(self._dim, indices[:,0])
idents2 = Dw.get_identifiers(self._dim, indices[:,1])
idents = zip(idents1, idents2)
# 3.) Identify close subgraphs
G = DA.asnetworkx()
for edge in G.edges():
if edge not in idents:
G.delete_edge(edge)
S = nx.connected_component_subgraphs(G)
print map(len, S)
# 4.) Rank subgraphs
main.project.set_selection('gene_ids', idents1)
#main.project.set_sele
logger.log("notice", "Gene ids updated")
plt = GraphQueryScatterPlot(S, Dw)
#return [plt]
def _pairsim(self, Dw, ptype='cosine',cut_rat=.2):
"""Returns close pairs across given dim.
ptype : ['cov', 'correlation', 'cosine', 'heat', 'euclidean']
"""
W = Dw.asarray()
if ptype == 'cov':
W -= W.mean(1)[:,scipy.newaxis]
wcov = scipy.dot(W, W.T)/(W.shape[1]-1)
wcov_min = wcov.max()*cut_rat
indices = scipy.asarray(scipy.where(wcov >= wcov_min)).T
elif ptype == 'heat':
from hcluster import pdist, squareform
D = squareform(pdist(W))
H = exp(-D)
h_min = H.max()*cut_rat
indices = scipy.asarray(scipy.where(H >= h_min)).T
elif ptype in ['euclidean', 'cosine', 'correlation']:
from hcluster import pdist, squareform
D = squareform(pdist(W), ptype)
d_min = D.max()*cut_rat
indices = []
for i in range(D.shape[0]):
for j in range(i, D.shape[0]):
if D[i,j] <= d_min:
indices.append([i,j])
print "W"
print W.shape
indices = scipy.asarray(indices)
else:
raise ValueError("ptype: %s not valid" %ptype)
return indices
def _subgraphsim(self, Dw, idents, stype='dijkstra'):
# subgraph
Gw = nx.XGraph()
for edge in idents:
e = G.get_edge(edge)
Gw.add_edge()
if stype == 'dijkstra':
pass
class GraphQueryScatterPlot(plots.ScatterPlot):
def __init__(self, subgraphs, Dw, *args, **kw):
self._subgraphs = subgraphs
self._nx_nodes = []
self._nx_edges = []
self._init_scatter(Dw)
self.overlay_subgraphs()
def _init_scatter(self, Dw):
self._Dw = Dw
id_dim, sel_dim = Dw.get_dim_name()
self._dim = id_dim
id_1, = Dw.get_identifiers(sel_dim, [0])
id_2, = Dw.get_identifiers(sel_dim, [1])
plots.ScatterPlot.__init__(self, Dw, Dw, id_dim, sel_dim, id_1, id_2, c='g', s=50,name="Hypo", alpha=.5)
def overlay_subgraphs(self):
all_nodes = self._Dw.get_identifiers(self._dim, sorted=True)
for subgraph in self._subgraphs:
# get xy positions from
nodes = subgraph.nodes()
for i, node in enumerate(all_nodes):
pos[node] = (self.xaxis_data[i], self.yaxis_data[i])
nn = nx.draw_networkx_nodes(subgraph, pos, node_size=200, ax=self.axes, zorder=10)
ee = nx.draw_networkx_edges(subgraph, pos, ax=self.axes, zorder=9)
self._nx_nodes.append(nn)
self._nx_edges.append(ee)
def _delete_networks(self):
if len(self._nx_nodes) > 0:
for n in self._nx_nodes:
self._nx_nodes.remove(n)
self.axes.collections.remove(n)
if len(self._nx_edges) > 0:
for e in self._nx_edges:
self._nx_edges.remove(e)
self.axes.collections.remove(e)
def set_ordinate(self, sb):
self._delete_networks()
self.overlay_subgraphs()
plots.ScatterPlot.set_ordinate(self, sb)
def set_absicca(self, sb):
self._delete_networks()
self.overlay_subgraphs()
plots.ScatterPlot.set_absicca(self, sb)
class CAsinglesel(workflow.Function):
""" Modified non-symmetric correpsondence analysis.
Setup multiple selections:
Input : - a subset(s) along a dimension (selection) of `interesting` identifiers.
- Predefined subsets (categories) along the same dimension.
1.) The cooccurence matrix of interesting identifers and categories is made.
2.) The variables are scaled to represent the relative frequencies.
"""
def run(X, Ckegg):
pass
class CASingleSelDouble(workflow.Function):
"""
"""
def run(X, Ckegg):
pass