Projects/laydi
Projects
/
laydi
Archived
7
0
Fork 0
This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
laydi/scripts/lpls/rpy_go.py

264 lines
9.5 KiB
Python

""" Module for Gene ontology related functions called in R"""
import scipy
import rpy
silent_eval = rpy.with_mode(rpy.NO_CONVERSION, rpy.r)
import collections
def goterms_from_gene(genelist, ontology='BP', garbage=['IEA'], ic_cutoff=2.0, verbose=False):
""" Returns the go-terms from a specified genelist (Entrez id).
Recalculates the information content if needed based on selected evidence codes.
"""
rpy.r.library("GOSim")
_CODES = {"IMP" : "inferred from mutant phenotype",
"IGI" : "inferred from genetic interaction",
"IPI" :"inferred from physical interaction",
"ISS" : "inferred from sequence similarity",
"IDA" : "inferred from direct assay",
"IEP" : "inferred from expression pattern",
"IEA" : "inferred from electronic annotation",
"TAS" : "traceable author statement",
"NAS" : "non-traceable author statement",
"ND" : "no biological data available",
"IC" : "inferred by curator"
}
_ONTOLOGIES = ['BP', 'CC', 'MF']
#assert(scipy.all([(code in _CODES) for code in garbage]) or garbage==None)
assert(ontology in _ONTOLOGIES)
dummy = rpy.r.setOntology(ontology)
ddef = False
if ontology=='BP' and garbage!=None:
# This is for ont=BP and garbage =['IEA', 'ISS', 'ND']
rpy.r.load("ICsBP_small.rda") # Excludes IEA
ic = rpy.r.assign("IC",rpy.r.IC, envir=rpy.r.GOSimEnv)
max_val = 0
for key, val in ic.items():
if val != scipy.inf:
if val>max_val:
max_val = val
for key, val in ic.items():
ic[key] = val/max_val
else:
# NB! this IC is just for BP
ic = rpy.r('get("IC", envir=GOSimEnv)')
print "loading GO definitions environment"
gene2terms = collections.defaultdict(list)
cc = 0
dd = 0
ii = 0
jj = 0
kk = 0
all = rpy.r.mget(genelist, rpy.r.GOENTREZID2GO,ifnotfound="NA")
n_ic = len(ic)
print "Number of terms with IC: %d" %n_ic
stopp = False
for gene, terms in all.items():
if verbose:
print "\n\n ======ITEM========\n"
print "Gene: " + str(gene)
print "Number of terms: %d " %len(terms)
print terms
print "---\n"
if stopp:
1/0
if terms!="NA":
for term, desc in terms.items():
if verbose:
print "\nChecking term: " + str(term)
print "With description: " + str(desc)
if desc['Ontology'].lower() == ontology.lower() and term in ic:
if ic[term]>ic_cutoff:
#print ic[term]
jj+=1
if verbose:
print "too high" + str((gene, term))
stopp = True
continue
cc += 1
if verbose:
print "accepted" + str((gene, term))
gene2terms[gene].append(term)
else:
if verbose:
print "Not accepted: " + str((gene, term))
if term not in ic:
if verbose:
print "Not in IC: " + str((gene, term))
kk+=1
if desc['Ontology'].lower() != ontology:
if verbose:
print "Not in Ontology" + str((gene, term))
dd+=1
else:
ii+=1
print "Number of genes total: %d" %len(all)
print "\nNumber of genes without annotation: (%d (NA))" %ii
print "\nNumber of terms with annoation but no IC: %d" %kk
print "\nNumber of terms not in %s : %d " %(ontology, dd)
print "\nNumber of terms with too high IC : %d " %jj
print "\n Number of accepted terms: %d" %cc
return gene2terms
def genego_matrix(goterms, tmat, gene_ids, term_ids, func=max):
ngenes = len(gene_ids)
nterms = len(term_ids)
gene2indx = {}
for i,id in enumerate(gene_ids):
gene2indx[id]=i
term2indx = {}
for i,id in enumerate(term_ids):
term2indx[id]=i
#G = scipy.empty((nterms, ngenes),'d')
G = []
new_gene_index = []
for gene, terms in goterms.items():
g_ind = gene2indx[gene]
if len(terms)>0:
t_ind = []
new_gene_index.append(g_ind)
for term in terms:
if term2indx.has_key(term): t_ind.append(term2indx[term])
subsim = tmat[t_ind, :]
gene_vec = scipy.apply_along_axis(func, 0, subsim)
G.append(gene_vec)
return scipy.asarray(G), new_gene_index
def genego_sim(gene2go, gene_ids, all_go_terms, STerm, go_term_sim="OA", term_sim="Lin", verbose=False):
"""Returns go-terms x genes similarity matrix.
:input:
- gene2go: dict: keys: gene_id, values: go_terms
- gene_ids: list of gene ids (entrez ids)
- STerm: (go_terms x go_terms) similarity matrix
- go_terms_sim: similarity measure between a gene and multiple go terms (max, mean, OA)
- term_sim: similarity measure between two go-terms
- verbose
"""
rpy.r.library("GOSim")
#gene_ids = gene2go.keys()
GG = scipy.empty((len(all_go_terms), len(gene_ids)), 'd')
for j,gene in enumerate(gene_ids):
for i,go_term in enumerate(all_go_terms):
if verbose:
print "\nAssigning similarity from %s to terms(gene): %s" %(go_term,gene)
GG_ij = rpy.r.getGSim(go_term, gene2go[gene], similarity=go_term_sim,
similarityTerm=term_sim, STerm=STerm, verbose=verbose)
GG[i,j] = GG_ij
return GG
def goterm2desc(gotermlist):
"""Returns the go-terms description keyed by go-term.
"""
rpy.r.library("GO")
term2desc = {}
for term in gotermlist:
try:
desc = rpy.r('Term(GOTERM[["' +str(term)+ '"]])')
term2desc[str(term)] = desc
except:
raise Warning("Description not found for %s\n Mapping incomplete" %term)
return term2desc
def parents_dag(go_terms, ontology=['BP']):
""" Returns a list of lists representation of a GO DAG parents of goterms.
make the networkx graph by:
G = networkx.Digraph()
G = networkx.from_dict_of_lists(edge_dict, G)
"""
try:
rpy.r.library("GOstats")
except:
raise ImportError, "Gostats"
assert(go_terms[0][:3]=='GO:')
# go valid namespace
go_env = {'BP':rpy.r.GOBPPARENTS, 'MF':rpy.r.GOMFPARENTS, 'CC': rpy.r.GOCCPARENTS}
graph = rpy.r.GOGraph(go_terms, go_env[ontology[0]])
edges = rpy.r.edges(graph)
edges.pop('all')
edge_dict = {}
for head, neighbours in edges.items():
for nn in neighbours.values():
if edge_dict.has_key(nn):
edge_dict[nn].append(head)
else:
edge_dict[nn] = [head]
return edge_dict
def gene_GO_hypergeo_test(genelist,universe="entrezUniverse",ontology="BP",chip = "hgu133a",pval_cutoff=0.01,cond=False,test_direction="over"):
#assert(scipy.alltrue([True for i in genelist if i in universe]))
universeGeneIds = universe
params = rpy.r.new("GOHyperGParams",
geneIds=genelist,
annotation="hgu133a",
ontology=ontology,
pvalueCutoff=pval_cutoff,
conditional=cond,
testDirection=test_direction
)
result = rpy.r.summary(rpy.r.hyperGTest(params))
return result, params
def data_aff2loc_hgu133a(X, aff_ids, verbose=False):
aff_ids = scipy.asarray(aff_ids)
if verbose:
print "\nNumber of probesets in affy list: %s" %len(aff_ids)
import rpy
rpy.r.library("hgu133a")
trans_table = rpy.r.as_list(rpy.r.hgu133aENTREZID)
if verbose:
print "Number of entrez ids: %d" %(scipy.asarray(trans_table.values())>0).sum()
enz2aff = collections.defaultdict(list)
#aff2enz = collections.defaultdict(list)
for aff, enz in trans_table.items():
if int(enz)>0 and (aff in aff_ids):
enz2aff[enz].append(aff)
#aff2enz[aff].append(enz)
if verbose:
print "\nNumber of translated entrez ids: %d" %len(enz2aff)
aff2ind = dict(zip(aff_ids, scipy.arange(len(aff_ids))))
var_x = X.var(0)
new_data = []
new_ids = []
m = 0
s = 0
for enz, aff_id_list in enz2aff.items():
index = [aff2ind[aff_id] for aff_id in aff_id_list]
if len(index)>1:
m+=1
if verbose:
pass
#print "\nEntrez id: %s has %d probesets" %(enz, len(index))
#print index
xsub = X[:,index]
choose_this = scipy.argmax(xsub.var(0))
new_data.append(xsub[:,choose_this].ravel())
else:
s+=1
new_data.append(X[:,index].ravel())
new_ids.append(enz)
if verbose:
print "Ids with multiple probesets: %d" %m
print "Ids with unique probeset: %d" %s
X = scipy.asarray(new_data).T
return X, new_ids
def R_PLS(x,y,ncomp=3, validation='"LOO"'):
rpy.r.library("pls")
rpy.r.assign("X", x)
rpy.r.assign("Y", y)
callstr = "plsr(Y~X, ncomp=" + str(ncomp) + ", validation=" + validation + ")"
print callstr
result = rpy.r(callstr)
return result