This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
laydi/scripts/lpls/plots_lpls.py
2008-02-08 14:58:46 +00:00

149 lines
4.8 KiB
Python

import pylab
import matplotlib
import networkx as nx
import scipy
import rpy
def plot_corrloads(R, pc1=0,pc2=1,s=20, c='b', zorder=5,expvar=None,ax=None,drawback=True, labels=None, **kwds):
""" Correlation loading plot."""
# background
if ax==None or drawback==True:
radius = 1
center = (0,0)
c100 = matplotlib.patches.Circle(center,
radius=radius,
facecolor=(0.97, .97, .97),
zorder=1,
linewidth=1,
edgecolor=(0,0,0))
c50 = matplotlib.patches.Circle(center,
radius=radius/2.0,
facecolor=(.85,.85,.85),
zorder=1,
linewidth=1,
edgecolor=(0,0,0))
ax = pylab.gca()
ax.add_patch(c100)
ax.add_patch(c50)
ax.axhline(lw=1.5,color='k', zorder=4)
ax.axvline(lw=1.5,color='k', zorder=4)
# corrloads
ax.scatter(R[:,pc1], R[:,pc2], s=s, c=c,zorder=zorder, **kwds)
ax.set_xlim([-1.1,1.1])
ax.set_ylim([-1.1,1.1])
if expvar!=None:
xstring = "Comp: %d expl.var: %.1f " %(pc1+1, expvar[pc1])
pylab.xlabel(xstring)
ystring = "Comp: %d expl.var.: %.1f " %(pc2+1, expvar[pc2])
pylab.ylabel(ystring)
if labels!=None:
assert(len(labels)==R.shape[0])
for name, r in zip(labels, R):
pylab.text(r[pc1], r[pc2], " " + name)
#pylab.show()
def dag(terms, ontology):
rpy.r.library("GOstats")
__parents = {'bp' : rpy.r.GOBPPARENTS,
'mf' : rpy.r.GOMFPARENTS,
'cc' : rpy.r.GOCCPARENTS}
gograph = rpy.r.GOGraph(terms, __parents.get(ontology.lower()))
dag = rpy.r.edges(gograph)
#setattr(dag, "_ontology", ontology)
return dag
def plot_dag(dag, node_color='b', node_size=30,with_labels=False,nodelist=None,pos=None,**kwd):
rpy.r.library("GOstats")
dag_name = "GO-bp"
# networkx does not play well with colon in node names
clean_edges = {}
for head, neigb in dag.items():
head = head.replace(":", "_")
nei = [i.replace(":", "_") for i in neigb]
clean_edges[head] = nei
if pos==None:
G = nx.from_dict_of_lists(clean_edges, nx.DiGraph(name=dag_name))
pos = nx.pydot_layout(G, prog='dot')
pos_new = {}
for k, v in pos.items():
x,y = v
k = k.replace("_", ":")
pos_new[k] = (x, -y)
pos = pos_new
G = nx.from_dict_of_lists(dag, nx.Graph(name=dag_name))
if len(node_color)>1:
assert(len(node_color)==len(nodelist))
nx.draw_networkx(G,pos, with_labels=with_labels, node_size=node_size, node_color=node_color, nodelist=nodelist, **kwd)
return pos
def plot_ZXcorr(gene_ids, term_ids, gene2go, X, D, scale=True):
""" Plot correlation/covariance between genes as a function of
semantic difference.
input: X (n, p) data matrix
D (p, p) gene-gene sematic similarity matrix
"""
D = scipy.corrcoef(X)
term2ind = dict(enumerate(term_ids))
for i, gene_i in enumerate(gene_ids):
for j, gene_j in enumerate(gene_ids):
if j<i:
r2 = D[i,j]
terms_i = gene2go[gene_i]
terms_j = gene2go[gene_j]
for ti, term in enumerate(term_ids):
if term in terms_i:
pass
def clustering_index(T, Yg):
pass
def draw_gene(gid, gene_ids, gene2go, Z, tmat, terms, G, pos):
"""Draw dags with marked go terms and distance to all terms.
"""
sub_terms = gene2go[gid]
sub_index = [i for i, tid in enumerate(terms) if tid in sub_terms]
node_size = 70.*scipy.ones((len(terms),))
node_size[sub_index] = 500
gene_index = [i for i, gene_id in enumerate(gene_ids) if gene_id==gid]
node_color = Z[:,gene_index].ravel()
#1/0
#node_size=200*node_color
#node_color='g'
pylab.figure()
nx.draw_networkx(G, pos, node_color=node_color, node_size=node_size, with_labels=False, nodelist=terms)
ax = pylab.gca()
pylab.colorbar(ax.collections[0])
for tid in sub_index:
pylab.figure()
node_color = tmat[tid,:]
#node_size = 70*scipy.ones((len(terms),))
node_size = 170*node_color
node_size[tid] = 500
nx.draw_networkx(G, pos, node_color=node_color, node_size=node_size, with_labels=False, nodelist=terms)
pylab.title(terms[tid])
ax = pylab.gca()
pylab.colorbar(ax.collections[0])
pylab.show()
#nx.show()