Projects/laydi
Projects
/
laydi
Archived
7
0
Fork 0
This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
laydi/workflows/test_workflow.py

279 lines
10 KiB
Python

import gtk
from system import dataset, logger, plots, workflow
#import geneontology
#import gostat
from scipy import array,randn,log
import cPickle
import networkx
class TestWorkflow (workflow.Workflow):
name = 'Test Workflow'
ident = 'test'
description = 'Test Gene Ontology Workflow. This workflow currently serves as a general testing workflow.'
def __init__(self, app):
workflow.Workflow.__init__(self, app)
load = workflow.Stage('load', 'Load Data')
load.add_function(CelFileImportFunction())
load.add_function(TestDataFunction())
load.add_function(DatasetLoadFunction())
load.add_function(SelectFunction())
self.add_stage(load)
preproc = workflow.Stage('preprocess', 'Preprocessing')
preproc.add_function(DatasetLog())
preproc.add_function(workflow.Function('rma', 'RMA'))
self.add_stage(preproc)
go = workflow.Stage('go', 'Gene Ontology Data')
go.add_function(GODistanceFunction())
self.add_stage(go)
regression = workflow.Stage('regression', 'Regression')
regression.add_function(workflow.Function('pls', 'PLS'))
self.add_stage(regression)
explore = workflow.Stage('explore', 'Explorative analysis')
explore.add_function(PCAFunction(self))
self.add_stage(explore)
save = workflow.Stage('save', 'Save Data')
save.add_function(DatasetSaveFunction())
self.add_stage(save)
class LoadAnnotationsFunction(workflow.Function):
def __init__(self):
workflow.Function.__init__(self, 'load-go-ann', 'Load Annotations')
self.annotations = None
def load_file(self, filename):
f = open(filename)
self.annotations = Annotations('genes', 'go-terms')
logger.log('notice', 'Loading annotation file: %s' % filename)
for line in f.readlines():
val = line.split(' \t')
if len(val) > 1:
val = [v.strip() for v in val]
retval.add_annotations('genes', val[0],
'go-terms', set(val[1:]))
def on_response(self, dialog, response):
if response == gtk.RESPONSE_OK:
logger.log('notice', 'Reading file: %s' % dialog.get_filename())
self.load_file(dialog.get_filename())
def run(self):
btns = ('Open', gtk.RESPONSE_OK, \
'Cancel', gtk.RESPONSE_CANCEL)
dialog = gtk.FileChooserDialog('Open GO Annotation File',
buttons=btns)
dialog.connect('response', self.on_response)
dialog.run()
dialog.destroy()
return [self.annotations]
class GODistanceFunction(workflow.Function):
def __init__(self):
workflow.Function.__init__(self, 'go_diatance', 'GO Distances')
self.output = None
def run(self, data):
logger.log('debug', 'datatype: %s' % type(data))
if not type(data) == Annotations:
return None
logger.log('debug', 'dimensions: %s' % data.dimensions)
genes = data.get_ids('genes')
gene_distances = array((len(genes), len(genes)))
return gene_distances
class TestDataFunction(workflow.Function):
def __init__(self):
workflow.Function.__init__(self, 'test_data', 'Generate Test Data')
def run(self):
logger.log('notice', 'Injecting foo test data')
x = randn(5000,4)
X = dataset.Dataset(x)
p = plots.ScatterPlot(X, X, 'rows', 'rows', '0_1', '0_2',name='scatter')
p2 = plots.ScatterMarkerPlot(X, X, 'rows', 'rows', '0_1', '0_2',name='marker')
graph = networkx.XGraph()
for x in 'ABCDEF':
for y in 'ADE':
graph.add_edge(x, y, 3)
ds = dataset.GraphDataset(array(networkx.adj_matrix(graph)))
ds_plot = plots.NetworkPlot(ds)
print ds.get_dim_name()
ds_scatter = plots.ScatterMarkerPlot(ds, ds, 'rows_0', 'rows_0', '0_1', '0_2')
return [X, ds, p, ds_plot, ds_scatter,p2]
class SelectFunction(workflow.Function):
def __init__(self):
workflow.Function.__init__(self, 'select', 'Select')
def run(self, data):
s = dataset.Selection('Arbitrary selection')
s.select('rows', ['0_1', '0_2'])
print s['rows']
print s.dims()
return [s]
class DatasetLog(workflow.Function):
def __init__(self):
workflow.Function.__init__(self, 'log', 'Log')
def run(self, data):
logger.log('notice', 'Taking the log of dataset %s' % data.get_name())
d = data.asarray()
d = log(d)
new_data_name = 'log(%s)' % data.get_name()
ds = dataset.Dataset(d, name=new_data_name)
return [ds]
class DatasetLoadFunction(workflow.Function):
"""Loader for previously pickled Datasets."""
def __init__(self):
workflow.Function.__init__(self, 'load_data', 'Load Pickled Dataset')
def run(self):
chooser = gtk.FileChooserDialog(title="Select cel files...", parent=None,
action=gtk.FILE_CHOOSER_ACTION_OPEN,
buttons=(gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL,
gtk.STOCK_OPEN, gtk.RESPONSE_OK))
pkl_filter = gtk.FileFilter()
pkl_filter.set_name("Python pickled data files (*.pkl)")
pkl_filter.add_pattern("*.[pP][kK][lL]")
all_filter = gtk.FileFilter()
all_filter.set_name("All Files (*.*)")
all_filter.add_pattern("*")
chooser.add_filter(pkl_filter)
chooser.add_filter(all_filter)
try:
if chooser.run() == gtk.RESPONSE_OK:
return [cPickle.load(open(chooser.get_filename()))]
finally:
chooser.destroy()
class DatasetSaveFunction(workflow.Function):
"""QND way to save data to file for later import to this program."""
def __init__(self):
workflow.Function.__init__(self, 'save_data', 'Save Pickled Dataset')
def run(self):
if not data:
logger.log("notice", "No data to save.")
return
else:
data = data[0]
chooser = gtk.FileChooserDialog(title="Save pickled data...", parent=None,
action=gtk.FILE_CHOOSER_ACTION_SAVE,
buttons=(gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL,
gtk.STOCK_SAVE, gtk.RESPONSE_OK))
pkl_filter = gtk.FileFilter()
pkl_filter.set_name("Python pickled data files (*.pkl)")
pkl_filter.add_pattern("*.[pP][kK][lL]")
all_filter = gtk.FileFilter()
all_filter.set_name("All Files (*.*)")
all_filter.add_pattern("*")
chooser.add_filter(pkl_filter)
chooser.add_filter(all_filter)
chooser.set_current_name(data.get_name() + ".pkl")
try:
if chooser.run() == gtk.RESPONSE_OK:
cPickle.dump(data, open(chooser.get_filename(), "w"), protocol=2)
logger.log("notice", "Saved data to %r." % chooser.get_filename())
finally:
chooser.destroy()
class CelFileImportFunction(workflow.Function):
"""Loads AffyMetrix .CEL-files into matrix."""
def __init__(self):
workflow.Function.__init__(self, 'cel_import', 'Import Affy')
def run(self, data):
import rpy
chooser = gtk.FileChooserDialog(title="Select cel files...", parent=None,
action=gtk.FILE_CHOOSER_ACTION_OPEN,
buttons=(gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL,
gtk.STOCK_OPEN, gtk.RESPONSE_OK))
chooser.set_select_multiple(True)
cel_filter = gtk.FileFilter()
cel_filter.set_name("Cel Files (*.cel)")
cel_filter.add_pattern("*.[cC][eE][lL]")
all_filter = gtk.FileFilter()
all_filter.set_name("All Files (*.*)")
all_filter.add_pattern("*")
chooser.add_filter(cel_filter)
chooser.add_filter(all_filter)
try:
if chooser.run() == gtk.RESPONSE_OK:
rpy.r.library("affy")
silent_eval = rpy.with_mode(rpy.NO_CONVERSION, rpy.r)
silent_eval('E <- ReadAffy(filenames=c("%s"))' % '", "'.join(chooser.get_filenames()))
silent_eval('E <- rma(E)')
m = rpy.r('m <- E@exprs')
vector_eval = rpy.with_mode(rpy.VECTOR_CONVERSION, rpy.r)
rownames = vector_eval('rownames(m)')
colnames = vector_eval('colnames(m)')
# We should be nice and clean up after ourselves
rpy.r.rm(["E", "m"])
if m:
data = dataset.Dataset(m, (('ids', rownames), ('filename', colnames)), name="AffyMatrix Data")
plot = plots.LinePlot(data, "Gene profiles")
return [data, plot]
else:
logger.log("notice", "No data loaded from importer.")
finally:
chooser.destroy()
class PCAFunction(workflow.Function):
"""Generic PCA function."""
def __init__(self, wf):
workflow.Function.__init__(self, 'pca', 'PCA')
self._workflow = wf
def run(self, data):
import rpy
dim_2, dim_1 = data.get_dim_names()
silent_eval = rpy.with_mode(rpy.NO_CONVERSION, rpy.r)
rpy.with_mode(rpy.NO_CONVERSION, rpy.r.assign)("m", data.asarray())
silent_eval("t = prcomp(t(m))")
T_ids = map(str, range(1, rpy.r("dim(t$x)")[1]+1))
T = dataset.Dataset(rpy.r("t$x"), [(dim_1, data.get_identifiers(dim_1)),
("component", T_ids)], name="T")
P = dataset.Dataset(rpy.r("t$rotation"), [(dim_2, data.get_identifiers(dim_2)),
("component", T_ids)], name="P")
# cleanup
rpy.r.rm(["t", "m"])
loading_plot = plots.ScatterMarkerPlot(P, P, 'ids','component','1','2', "Loadings")
score_plot = plots.ScatterMarkerPlot(T, T,'filename','component','1','2', "Scores")
return [T, P, loading_plot, score_plot]