439 lines
12 KiB
Python
439 lines
12 KiB
Python
import sys
|
|
from pylab import *
|
|
import matplotlib
|
|
from scipy import *
|
|
from scipy.linalg import inv,norm
|
|
|
|
sys.path.append("../../fluents/lib")
|
|
import select_generators
|
|
|
|
def nipals_lpls(X, Y, Z, a_max, alpha=.7, mean_ctr=[2, 0, 1], scale='scores', verbose=True):
|
|
""" L-shaped Partial Least Sqaures Regression by the nipals algorithm.
|
|
|
|
(X!Z)->Y
|
|
:input:
|
|
X : data matrix (m, n)
|
|
Y : data matrix (m, l)
|
|
Z : data matrix (n, o)
|
|
alpha : how much z influence (1=max, 0=none)
|
|
|
|
:output:
|
|
T : X-scores
|
|
W : X-weights/Z-weights
|
|
P : X-loadings
|
|
Q : Y-loadings
|
|
U : X-Y relation
|
|
L : Z-scores
|
|
K : Z-loads
|
|
B : Regression coefficients X->Y
|
|
b0: Regression coefficient intercept
|
|
evx : X-explained variance
|
|
evy : Y-explained variance
|
|
evz : Z-explained variance
|
|
|
|
:Notes:
|
|
|
|
"""
|
|
if mean_ctr:
|
|
xctr, yctr, zctr = mean_ctr
|
|
X, mnX = center(X, xctr)
|
|
Y, mnY = center(Y, yctr)
|
|
Z, mnZ = center(Z, zctr)
|
|
|
|
varX = pow(X, 2).sum()
|
|
varY = pow(Y, 2).sum()
|
|
varZ = pow(Z, 2).sum()
|
|
|
|
m, n = X.shape
|
|
k, l = Y.shape
|
|
u, o = Z.shape
|
|
|
|
# initialize
|
|
U = empty((k, a_max))
|
|
Q = empty((l, a_max))
|
|
T = empty((m, a_max))
|
|
W = empty((n, a_max))
|
|
P = empty((n, a_max))
|
|
K = empty((o, a_max))
|
|
L = empty((u, a_max))
|
|
B = empty((a_max, n, l))
|
|
b0 = empty((a_max, m, l))
|
|
var_x = empty((a_max,))
|
|
var_y = empty((a_max,))
|
|
var_z = empty((a_max,))
|
|
|
|
for a in range(a_max):
|
|
if verbose:
|
|
print "\n Working on comp. %s" %a
|
|
u = Y[:,:1]
|
|
diff = 1
|
|
MAX_ITER = 100
|
|
lim = 1e-7
|
|
niter = 0
|
|
while (diff>lim and niter<MAX_ITER):
|
|
niter += 1
|
|
u1 = u.copy()
|
|
w = dot(X.T, u)
|
|
w = w/sqrt(dot(w.T, w))
|
|
l = dot(Z, w)
|
|
k = dot(Z.T, l)
|
|
k = k/sqrt(dot(k.T, k))
|
|
w = alpha*k + (1-alpha)*w
|
|
w = w/sqrt(dot(w.T, w))
|
|
t = dot(X, w)
|
|
c = dot(Y.T, t)
|
|
c = c/sqrt(dot(c.T, c))
|
|
u = dot(Y, c)
|
|
diff = abs(u1 - u).max()
|
|
if verbose:
|
|
print "Converged after %s iterations" %niter
|
|
tt = dot(t.T, t)
|
|
p = dot(X.T, t)/tt
|
|
q = dot(Y.T, t)/tt
|
|
l = dot(Z, w)
|
|
U[:,a] = u.ravel()
|
|
W[:,a] = w.ravel()
|
|
P[:,a] = p.ravel()
|
|
T[:,a] = t.ravel()
|
|
Q[:,a] = q.ravel()
|
|
L[:,a] = l.ravel()
|
|
K[:,a] = k.ravel()
|
|
|
|
X = X - dot(t, p.T)
|
|
Y = Y - dot(t, q.T)
|
|
Z = (Z.T - dot(w, l.T)).T
|
|
|
|
var_x[a] = pow(X, 2).sum()
|
|
var_y[a] = pow(Y, 2).sum()
|
|
var_z[a] = pow(Z, 2).sum()
|
|
B[a] = dot(dot(W[:,:a+1], inv(dot(P[:,:a+1].T, W[:,:a+1]))), Q[:,:a+1].T)
|
|
b0[a] = mnY - dot(mnX, B[a])
|
|
# variance explained
|
|
evx = 100.0*(1 - var_x/varX)
|
|
evy = 100.0*(1 - var_y/varY)
|
|
evz = 100.0*(1 - var_z/varZ)
|
|
if scale=='loads':
|
|
tnorm = apply_along_axis(norm, 0, T)
|
|
T = T/tnorm
|
|
Q = Q*tnorm
|
|
W = W*tnorm
|
|
return T, W, P, Q, U, L, K, B, b0, evx, evy, evz, mnX, mnY, mnZ
|
|
|
|
def svd_lpls(X, Y, Z, a_max, alpha=.7, mean_ctr=[2, 0, 1], verbose=True):
|
|
"""
|
|
NB: In the works ...
|
|
L-shaped Partial Least Sqaures Regression by the svd algorithm.
|
|
|
|
(X!Z)->Y
|
|
:input:
|
|
X : data matrix (m, n)
|
|
Y : data matrix (m, l)
|
|
Z : data matrix (n, o)
|
|
|
|
:output:
|
|
T : X-scores
|
|
W : X-weights/Z-weights
|
|
P : X-loadings
|
|
Q : Y-loadings
|
|
U : X-Y relation
|
|
L : Z-scores
|
|
K : Z-loads
|
|
B : Regression coefficients X->Y
|
|
b0: Regression coefficient intercept
|
|
evx : X-explained variance
|
|
evy : Y-explained variance
|
|
evz : Z-explained variance
|
|
|
|
:Notes:
|
|
Not quite there ,,,,,,,,,,,,,,
|
|
|
|
"""
|
|
if mean_ctr:
|
|
xctr, yctr, zctr = mean_ctr
|
|
X, mnX = center(X, xctr)
|
|
Y, mnY = center(Y, xctr)
|
|
Z, mnZ = center(Z, zctr)
|
|
|
|
varX = pow(X, 2).sum()
|
|
varY = pow(Y, 2).sum()
|
|
varZ = pow(Z, 2).sum()
|
|
|
|
m, n = X.shape
|
|
k, l = Y.shape
|
|
u, o = Z.shape
|
|
|
|
# initialize
|
|
U = empty((k, a_max))
|
|
Q = empty((l, a_max))
|
|
T = empty((m, a_max))
|
|
W = empty((n, a_max))
|
|
P = empty((n, a_max))
|
|
K = empty((o, a_max))
|
|
L = empty((u, a_max))
|
|
var_x = empty((a_max,))
|
|
var_y = empty((a_max,))
|
|
var_z = empty((a_max,))
|
|
|
|
for a in range(a_max):
|
|
if verbose:
|
|
print "\n Working on comp. %s" %a
|
|
xyz = dot(dot(Z,X.T),Y)
|
|
u,s,vt = linalg.svd(xyz, 0)
|
|
w = u[:,o]
|
|
t = dot(X, w)
|
|
tt = dot(t.T, t)
|
|
p = dot(X.T, t)/tt
|
|
q = dot(Y.T, t)/tt
|
|
l = dot(Z.T, w)
|
|
W[:,a] = w.ravel()
|
|
P[:,a] = p.ravel()
|
|
T[:,a] = t.ravel()
|
|
Q[:,a] = q.ravel()
|
|
L[:,a] = l.ravel()
|
|
K[:,a] = k.ravel()
|
|
X = X - dot(t, p.T)
|
|
Y = Y - dot(t, q.T)
|
|
Z = (Z.T - dot(w, l.T)).T
|
|
var_x[a] = pow(X, 2).sum()
|
|
var_y[a] = pow(Y, 2).sum()
|
|
var_z[a] = pow(Z, 2).sum()
|
|
B = dot(dot(W, inv(dot(P.T, W))), Q.T)
|
|
b0 = mnY - dot(mnX, B)
|
|
# variance explained
|
|
evx = 100.0*(1 - var_x/varX)
|
|
evy = 100.0*(1 - var_y/varY)
|
|
evz = 100.0*(1 - var_z/varZ)
|
|
return T, W, P, Q, U, L, K, B, b0, evx, evy, evz
|
|
|
|
|
|
def lplsr(X, Y, Z, a_max, mean_ctr=[2,0,1]):
|
|
""" Haralds LPLS.
|
|
"""
|
|
if mean_ctr!=None:
|
|
xctr, yctr, zctr = mean_ctr
|
|
X, mnX = center(X, xctr)
|
|
Y, mnY = center(Y, yctr)
|
|
Z, mnZ = center(Z, zctr)
|
|
|
|
varX = pow(X, 2).sum()
|
|
varY = pow(Y, 2).sum()
|
|
varZ = pow(Z, 2).sum()
|
|
m, n = X.shape
|
|
k, l = Y.shape
|
|
u, o = Z.shape
|
|
|
|
# initialize
|
|
Wy = empty((l, a_max))
|
|
Py = empty((l, a_max))
|
|
Ty = empty((m, a_max))
|
|
Tz = empty((o, a_max))
|
|
Wz = empty((u, a_max))
|
|
Pz = empty((u, a_max))
|
|
var_x = empty((a_max,))
|
|
var_y = empty((a_max,))
|
|
var_z = empty((a_max,))
|
|
|
|
# residuals
|
|
Ey = Y.copy()
|
|
Ez = Z.copy()
|
|
Ex = X.copy()
|
|
for i in range(a_max):
|
|
YtXZ = dot(Ey.T, dot(X, Ez.T))
|
|
U, S, V = linalg.svd(YtXZ)
|
|
wy = U[:,0]
|
|
print wy
|
|
wz = V[0,:]
|
|
ty = dot(Ey, wy)
|
|
tz = dot(Ez.T, wz)
|
|
py = dot(Ey.T, ty)/dot(ty.T,ty)
|
|
pz = dot(Ez, tz)/dot(tz.T,tz)
|
|
Wy[:,i] = wy
|
|
Wz[:,i] = wz
|
|
Ty[:,i] = ty
|
|
Tz[:,i] = tz
|
|
Py[:,i] = py
|
|
Pz[:,i] = pz
|
|
Ey = Ey - outer(ty, py.T)
|
|
Ez = (Ez.T - outer(tz, pz.T)).T
|
|
var_y[i] = pow(Ey, 2).sum()
|
|
var_z[i] = pow(Ez, 2).sum()
|
|
|
|
tyd = apply_along_axis(norm, 0, Ty)
|
|
tzd = apply_along_axis(norm, 0, Tz)
|
|
Tyu = Ty/tyd
|
|
Tzu = Tz/tzd
|
|
C = dot(dot(Tyu.T, X), Tzu)
|
|
for i in range(a_max):
|
|
Ex = Ex - dot(dot(Ty[:,:i+1],C[:i+1,:i+1]), Tz[:,:i+1].T)
|
|
var_x[i] = pow(Ex,2).sum()
|
|
# variance explained
|
|
print "var_x:"
|
|
print var_x
|
|
print "varX total:"
|
|
print varX
|
|
|
|
evx = 100.0*(1 - var_x/varX)
|
|
evy = 100.0*(1 - var_y/varY)
|
|
evz = 100.0*(1 - var_z/varZ)
|
|
|
|
return Ty, Tz, Wy, Wz, Py, Pz, C, Ey, Ez, Ex, evx, evy, evz
|
|
|
|
def bifpls(X, Y, Z, a_max, alpha):
|
|
"""Swedssihsh LPLS by nipals.
|
|
"""
|
|
u = X[:,0]
|
|
Ey = Y.copy()
|
|
Ez = Z.copy()
|
|
for i in range(100):
|
|
w = dot(X.T,u)
|
|
w = w/vnorm(w)
|
|
t = dot(X, w)
|
|
q = dot(Ey, t.T)/dot(t.T,t)
|
|
qnorm = vnorm(q)
|
|
q = q/qnorm
|
|
v = dot(Ez, q)
|
|
s = dot(Ez.T, v)/dot(v.T,v)
|
|
v = v*vnorm(s)
|
|
s = s/vnorm(s)
|
|
c = qnorm*(alpha*q + (1-alpha)*s)
|
|
u = dot(Ey, c)/dot(s.T,s)
|
|
p = dot(X.T, t)/dot(t.T,t)
|
|
v2 = dot(Ez, s)/dot(s.T,s)
|
|
Ey = Ey - dot(t, p.T)
|
|
Ez = Ez - dot(v2, c.T)
|
|
# variance explained
|
|
evx = 100.0*(1 - var_x/varX)
|
|
evy = 100.0*(1 - var_y/varY)
|
|
evz = 100.0*(1 - var_z/varZ)
|
|
|
|
def center(a, axis):
|
|
# 0 = col center, 1 = row center, 2 = double center
|
|
# -1 = nothing
|
|
if len(a.shape)==1:
|
|
mn = a.mean()
|
|
return a - mn, mn
|
|
if a.shape[0]==1 or a.shape[1]==1:
|
|
mn = a.mean()
|
|
return a - mn, mn
|
|
if axis==-1:
|
|
mn = zeros((a.shape[1],))
|
|
return a - mn, mn
|
|
elif axis==0:
|
|
mn = a.mean(0)
|
|
return a - mn, mn
|
|
elif axis==1:
|
|
mn = a.mean(1)[:,newaxis]
|
|
return a - mn , mn
|
|
elif axis==2:
|
|
mn = a.mean(1)[:,newaxis] + a.mean(0) - a.mean()
|
|
return a - mn, mn
|
|
else:
|
|
raise IOError("input error: axis must be in [-1,0,1,2]")
|
|
|
|
def correlation_loadings(D, T, P, test=True):
|
|
""" Returns correlation loadings.
|
|
|
|
:input:
|
|
- D: [nsamps, nvars], data (non-centered data)
|
|
- T: [nsamps, a_max], Scores
|
|
- P: [nvars, a_max], Loadings
|
|
:ouput:
|
|
- Rloads: [nvars, a_max], Correlation loadings
|
|
- rmseVars: [nvars], scaling coeff. for each var in D
|
|
|
|
:notes:
|
|
- FIXME: Calculation is not valid .... using corrceof instead
|
|
"""
|
|
nsamps, nvars = D.shape
|
|
nsampsT, a_max = T.shape
|
|
nvarsP, a_maxP = P.shape
|
|
if nsamps!=nsampsT: raise IOError("D/T mismatch")
|
|
if a_max!=a_maxP: raise IOError("a_max mismatch")
|
|
if nvars!=nvarsP: raise IOError("D/P mismatch")
|
|
|
|
#init
|
|
Rloads = empty((nvars, a_max), 'd')
|
|
stdvar = stats.std(D, 0)
|
|
rmseVars = sqrt(nsamps-1)*stdvar
|
|
|
|
# center
|
|
D = D - D.mean(0)
|
|
TT = diag(dot(T.T, T))
|
|
sTT = sqrt(TT)
|
|
for a in range(a_max):
|
|
Rloads[:,a] = sTT[a]*P[:,a]/rmseVars
|
|
R = empty_like(Rloads)
|
|
for a in range(a_max):
|
|
for k in range(nvars):
|
|
r = corrcoef(D[:,k], T[:,a])
|
|
R[k,a] = r[0,1]
|
|
#Rloads = R
|
|
return Rloads, R, rmseVars
|
|
|
|
|
|
|
|
def cv_lpls(X, Y, Z, a_max=2, nsets=None,alpha=.5, mean_ctr=[2,0,1]):
|
|
"""Performs crossvalidation to get generalisation error in lpls"""
|
|
|
|
# if double centering of x or y:
|
|
# row-center prior to cross validation (as this is independent of subsets)
|
|
if mean_ctr[0]==2:
|
|
mnx_row = X.mean(1)[:,newaxis]
|
|
X = X - mnx_row
|
|
mean_ctr[0] = 0
|
|
else:
|
|
mnx_row = 0
|
|
if mean_ctr[1]==2:
|
|
if Y.shape[1]!=1:
|
|
mny_row = Y.mean(1)[:,newaxis]
|
|
Y = Y - mny_row
|
|
else:
|
|
mny_row = 0
|
|
|
|
cv_iter = select_generators.pls_gen(X, Y, n_blocks=nsets,center=False,index_out=True)
|
|
k, l = Y.shape
|
|
Yhat = empty((a_max,k,l), 'd')
|
|
for i, (xcal,xi,ycal,yi,ind) in enumerate(cv_iter):
|
|
T, W, P, Q, U, L, K, B, b0, evx, evy, evz, mnx, mny, mnz = nipals_lpls(xcal,ycal,Z,
|
|
a_max=a_max,
|
|
alpha=alpha,
|
|
mean_ctr=mean_ctr,
|
|
verbose=False)
|
|
|
|
for a in range(a_max):
|
|
xc = xi - mnx
|
|
Yhat[a,ind,:] = mny + dot(xc, B[a])
|
|
|
|
Yhat_class = zeros_like(Yhat)
|
|
for a in range(a_max):
|
|
for i in range(k):
|
|
Yhat_class[a,i,argmax(Yhat[a,i,:])] = 1.0
|
|
class_err = 100*((Yhat_class+Y)==2).sum(1)/Y.sum(0).astype('d')
|
|
|
|
sep = (Y - Yhat)**2
|
|
rmsep = sqrt(sep.mean(1))
|
|
return rmsep, Yhat, class_err
|
|
|
|
def jk_lpls(X, Y, Z, a_max, nsets=None, xz_alpha=.5, mean_ctr=[2,0,1]):
|
|
cv_iter = select_generators.pls_gen(X, Y, n_blocks=nsets,center=False,index_out=False)
|
|
m, n = X.shape
|
|
k, l = Y.shape
|
|
o, p = Z.shape
|
|
if nsets==None:
|
|
nsets = m
|
|
WWx = empty((nsets, n, a_max), 'd')
|
|
WWz = empty((nsets, o, a_max), 'd')
|
|
WWy = empty((nsets, l, a_max), 'd')
|
|
for i, (xcal,xi,ycal,yi) in enumerate(cv_iter):
|
|
T, W, P, Q, U, L, K, B, b0, evx, evy, evz,mnx,mny,mnz = nipals_lpls(xcal,ycal,Z,
|
|
a_max=a_max,
|
|
alpha=xz_alpha,
|
|
mean_ctr=mean_ctr,
|
|
scale='loads',
|
|
verbose=False)
|
|
WWx[i,:,:] = W
|
|
WWz[i,:,:] = L
|
|
WWy[i,:,:] = Q
|
|
|
|
return WWx, WWz, WWy
|