import sys,os import webbrowser from fluents import logger, plots,workflow,dataset,main from fluents.lib import blmfuncs,nx_utils,validation,engines,cx_stats,cx_utils import gobrowser, geneontology import scipy import networkx as nx class SmallTestWorkflow(workflow.Workflow): name = 'Smokers' ident = 'smokers' description = 'A small test workflow for gene expression analysis.' def __init__(self): workflow.Workflow.__init__(self) # DATA IMPORT load = workflow.Stage('load', 'Data') load.add_function(DatasetLoadFunctionSmokerSmall()) load.add_function(DatasetLoadFunctionSmokerMedium()) load.add_function(DatasetLoadFunctionSmokerFull()) load.add_function(DatasetLoadFunctionSmokerGO()) #load.add_function(DatasetLoadFunctionCYCLE()) self.add_stage(load) # NETWORK PREPROCESSING #net = workflow.Stage('net', 'Network integration') #net.add_function(DiffKernelFunction()) #net.add_function(ModKernelFunction()) #net.add_function(RandDiffKernelFunction()) #self.add_stage(net) # BLM's model = workflow.Stage('models', 'Models') model.add_function(blmfuncs.PCA()) model.add_function(blmfuncs.PLS()) model.add_function(blmfuncs.LPLS()) model.add_function(SAM()) #model.add_function(bioconFuncs.SAM(app)) self.add_stage(model) query = workflow.Stage('query', 'Gene Query') query.add_function(NCBIQuery()) query.add_function(KEGGQuery()) self.add_stage(query) # Gene Ontology go = workflow.Stage('go', 'Gene Ontology') go.add_function(gobrowser.LoadGOFunction()) go.add_function(gobrowser.SetICFunction()) # go.add_function(gobrowser.GOWeightFunction()) # go.add_function(gobrowser.DistanceToSelectionFunction()) # go.add_function(gobrowser.TTestFunction()) go.add_function(gobrowser.PlotDagFunction()) go.add_function(GoEnrichment()) go.add_function(GoEnrichmentCond()) self.add_stage(go) # EXTRA PLOTS #plt = workflow.Stage('net', 'Network') #plt.add_function(nx_analyser.KeggNetworkAnalyser()) #self.add_stage(plt) logger.log('debug', 'Small test workflow is now active') class DatasetLoadFunctionSmokerSmall(workflow.Function): """Loader for all ftsv files of smokers small datasets.""" def __init__(self): workflow.Function.__init__(self, 'load_small', 'Smoker (Small)') def run(self): path = 'data/smokers-small/' files = os.listdir(path) out = [] for fname in files: if fname.endswith('.ftsv'): input_file = open(os.path.join(path, fname)) out.append(dataset.read_ftsv(input_file)) return out class DatasetLoadFunctionSmokerMedium(workflow.Function): """Loader for all ftsv files of smokers small datasets.""" def __init__(self): workflow.Function.__init__(self, 'load_medium', 'Smoker (Medium)') def run(self): path = 'data/smokers-medium/' files = os.listdir(path) out = [] for fname in files: if fname.endswith('.ftsv'): input_file = open(os.path.join(path, fname)) out.append(dataset.read_ftsv(input_file)) return out class DatasetLoadFunctionSmokerFull(workflow.Function): """Loader for all ftsv files of smokers small datasets.""" def __init__(self): workflow.Function.__init__(self, 'load_full', 'Smoker (Full)') def run(self): path = 'data/smokers-full/' files = os.listdir(path) out = [] for fname in files: if fname.endswith('.ftsv'): input_file = open(os.path.join(path, fname)) out.append(dataset.read_ftsv(input_file)) return out class DatasetLoadFunctionSmokerGO(workflow.Function): """Loader for all ftsv files of smokers small datasets.""" def __init__(self): workflow.Function.__init__(self, 'load_go', 'Smoker (GO)') def run(self): path = 'data/smokers-go/' files = os.listdir(path) out = [] for fname in files: if fname.endswith('.ftsv'): input_file = open(os.path.join(path, fname)) out.append(dataset.read_ftsv(input_file)) return out class DatasetLoadFunctionCYCLE(workflow.Function): """Loader for pickled CYCLE datasets.""" def __init__(self): workflow.Function.__init__(self, 'load_data', 'Cycle') def run(self): filename='fluents/data/CYCLE' if filename: return dataset.from_file(filename) ##### WORKFLOW SPECIFIC FUNCTIONS ###### class SAM(workflow.Function): def __init__(self, id='sam', name='SAM'): workflow.Function.__init__(self, id, name) def run(self, x, y): n_iter = 50 #B alpha = 0.01 #cut off on qvals ############### # Main function call # setup prelimenaries import rpy rpy.r.library("siggenes") rpy.r.library("multtest") cl = scipy.dot(y.asarray(), scipy.diag([1,2,3]) ).sum(1) data = x.asarray().T sam = rpy.r.sam(data, cl=cl, B=n_iter, var_equal=False,med=False,s0=scipy.nan,rand=scipy.nan) qvals = scipy.asarray(rpy.r.slot(sam, "p.value")) pvals = scipy.asarray(rpy.r.slot(sam, "q.value")) sam_index = (qvals