"""Specialised plots for functions defined in blmfuncs.py. fixme: -- Im normalsing all color mapping input vectors to [0,1]. This will destroy informative numerical values in colorbar (but we are not showing these anyway). A better fix would be to let the colorbar listen to the scalarmappable instance and corect itself, but I did not get that to work ... fixme2: -- If scatterplot is not inited with a colorvector there will be no colorbar, but when adding colors the colorbar shoud be created. """ from fluents import plots from scipy import dot,sum,diag,arange,log,mean,newaxis,sqrt from matplotlib import cm import pylab as PB class PcaScorePlot(plots.ScatterPlot): """PCA Score plot""" def __init__(self, model, absi=0, ordi=1): self._T = model.model['T'] dataset_1 = model.as_dataset('T') dataset_2 = dataset_1 id_dim = dataset_1.get_dim_name(0) sel_dim = dataset_1.get_dim_name(1) id_1, = dataset_1.get_identifiers(sel_dim, [absi]) id_2, = dataset_1.get_identifiers(sel_dim, [ordi]) plots.ScatterPlot.__init__(self, dataset_1, dataset_2, id_dim, sel_dim, id_1, id_2 ,c='b' ,s=40 , name='pca-scores') def set_absicca(self, n): self.xaxis_data = self._T[:,n] def set_ordinate(self, n): self.yaxis_data = self._T[:,n] class PcaLoadingPlot(plots.ScatterPlot): """PCA Loading plot""" def __init__(self, model, absi=0, ordi=1): self._P = model.model['P'] dataset_1 = model.as_dataset('P') dataset_2 = dataset_1 id_dim = dataset_1.get_dim_name(0) sel_dim = dataset_1.get_dim_name(1) id_1, = dataset_1.get_identifiers(sel_dim, [absi]) id_2, = dataset_1.get_identifiers(sel_dim, [ordi]) if model.model.has_key('p_tsq'): col = model.model['p_tsq'].ravel() col = normalise(col) else: col = 'g' plots.ScatterPlot.__init__(self, dataset_1, dataset_2, id_dim, sel_dim, id_1, id_2,c=col,s=20, name='pls-loadings') def set_absicca(self, n): self.xaxis_data = self._P[:,n] def set_ordinate(self, n): self.yaxis_data = self._P[:,n] class PlsScorePlot(plots.ScatterPlot): """PLS Score plot""" def __init__(self, model, absi=0, ordi=1): self._T = model.model['T'] dataset_1 = model.as_dataset('T') dataset_2 = dataset_1 id_dim = dataset_1.get_dim_name(0) sel_dim = dataset_1.get_dim_name(1) id_1, = dataset_1.get_identifiers(sel_dim, [absi]) id_2, = dataset_1.get_identifiers(sel_dim, [ordi]) plots.ScatterPlot.__init__(self, dataset_1, dataset_2, id_dim, sel_dim, id_1, id_2 , c='b' ,s=40 , name='pls-scores') def set_absicca(self, n): self.xaxis_data = self._T[:,n] def set_ordinate(self, n): self.yaxis_data = self._T[:,n] class PlsLoadingPlot(plots.ScatterPlot): """PLS Loading plot""" def __init__(self, model, absi=0, ordi=1): self._P = model.model['P'] dataset_1 = model.as_dataset('P') dataset_2 = dataset_1 id_dim = dataset_1.get_dim_name(0) sel_dim = dataset_1.get_dim_name(1) id_1, = dataset_1.get_identifiers(sel_dim, [absi]) id_2, = dataset_1.get_identifiers(sel_dim, [ordi]) if model.model.has_key('w_tsq'): col = model.model['w_tsq'].ravel() col = normalise(col) else: col = 'g' plots.ScatterPlot.__init__(self, dataset_1, dataset_2, id_dim, sel_dim, id_1, id_2, c=col, s=20, name='loadings') def set_absicca(self, n): self.xaxis_data = self._P[:,n] def set_ordinate(self, n): self.yaxis_data = self._T[:,n] class LineViewXc(plots.LineViewPlot): """A line view of centered raw data """ def __init__(self, model, name='Profiles'): # copy, center, plot x = model._dataset['X'].copy() x._array = x._array - mean(x._array,0)[newaxis] plots.LineViewPlot.__init__(self, x, 1, None, name) class ParalellCoordinates(plots.Plot): """Parallell coordinates for score loads with many comp. """ def __init__(self, model, p='loads'): pass class PlsQvalScatter(plots.ScatterPlot): """A vulcano like plot of loads vs qvals """ def __init__(self, model, pc=0): if not model.model.has_key('w_tsq'): return self._W = model.model['P'] dataset_1 = model.as_dataset('P') dataset_2 = model.as_dataset('w_tsq') id_dim = dataset_1.get_dim_name(0) #genes sel_dim = dataset_1.get_dim_name(1) #_comp sel_dim_2 = dataset_2.get_dim_name(1) #_zero_dim id_1, = dataset_1.get_identifiers(sel_dim, [0]) id_2, = dataset_2.get_identifiers(sel_dim_2, [0]) if model.model.has_key('w_tsq'): col = model.model['w_tsq'].ravel() col = normalise(col) else: col = 'g' plots.ScatterPlot.__init__(self, dataset_1, dataset_2, id_dim, sel_dim, id_1, id_2, c=col, s=20, sel_dim_2=sel_dim_2, name='Load Volcano') class PredictionErrorPlot(plots.Plot): """A boxplot of prediction error vs. comp. number. """ def __init__(self, model, name="Pred. Err."): if not model.model.has_key('sep'): logger.log('notice', 'Model has no calculations of sep') return plots.Plot.__init__(self, name) self._frozen = True self.current_dim = 'johndoe' self.ax = self.fig.add_subplot(111) # draw sep = model.model['sep'] aopt = model.model['aopt'] bx_plot_lines = self.ax.boxplot(sqrt(sep)) aopt_marker = self.ax.axvline(aopt, linewidth=10, color='r',zorder=0, alpha=.5) # add canvas self.add(self.canvas) self.canvas.show() def set_current_selection(self, selection): pass class InfluencePlot(plots.ScatterPlot): """ """ pass def normalise(x): """Scale vector x to [0,1] """ x = x - x.min() x = x/x.max() return x