""" Module for Gene ontology related functions called in R""" import scipy import rpy silent_eval = rpy.with_mode(rpy.NO_CONVERSION, rpy.r) import collections def goterms_from_gene(genelist, ontology='BP', garbage=['IEA'], ic_cutoff=2.0, verbose=False): """ Returns the go-terms from a specified genelist (Entrez id). Recalculates the information content if needed based on selected evidence codes. """ rpy.r.library("GOSim") _CODES = {"IMP" : "inferred from mutant phenotype", "IGI" : "inferred from genetic interaction", "IPI" :"inferred from physical interaction", "ISS" : "inferred from sequence similarity", "IDA" : "inferred from direct assay", "IEP" : "inferred from expression pattern", "IEA" : "inferred from electronic annotation", "TAS" : "traceable author statement", "NAS" : "non-traceable author statement", "ND" : "no biological data available", "IC" : "inferred by curator" } _ONTOLOGIES = ['BP', 'CC', 'MF'] #assert(scipy.all([(code in _CODES) for code in garbage]) or garbage==None) assert(ontology in _ONTOLOGIES) dummy = rpy.r.setOntology(ontology) ddef = False if ontology=='BP' and garbage!=None: # This is for ont=BP and garbage =['IEA', 'ISS', 'ND'] rpy.r.load("ICsBP_small.rda") # Excludes IEA ic = rpy.r.assign("IC",rpy.r.IC, envir=rpy.r.GOSimEnv) max_val = 0 for key, val in ic.items(): if val != scipy.inf: if val>max_val: max_val = val for key, val in ic.items(): ic[key] = val/max_val else: # NB! this IC is just for BP ic = rpy.r('get("IC", envir=GOSimEnv)') print "loading GO definitions environment" gene2terms = collections.defaultdict(list) cc = 0 dd = 0 ii = 0 jj = 0 kk = 0 all = rpy.r.mget(genelist, rpy.r.GOENTREZID2GO,ifnotfound="NA") n_ic = len(ic) print "Number of terms with IC: %d" %n_ic stopp = False for gene, terms in all.items(): if verbose: print "\n\n ======ITEM========\n" print "Gene: " + str(gene) print "Number of terms: %d " %len(terms) print terms print "---\n" if stopp: 1/0 if terms!="NA": for term, desc in terms.items(): if verbose: print "\nChecking term: " + str(term) print "With description: " + str(desc) if desc['Ontology'].lower() == ontology.lower() and term in ic: if ic[term]>ic_cutoff: #print ic[term] jj+=1 if verbose: print "too high" + str((gene, term)) stopp = True continue cc += 1 if verbose: print "accepted" + str((gene, term)) gene2terms[gene].append(term) else: if verbose: print "Not accepted: " + str((gene, term)) if term not in ic: if verbose: print "Not in IC: " + str((gene, term)) kk+=1 if desc['Ontology'].lower() != ontology: if verbose: print "Not in Ontology" + str((gene, term)) dd+=1 else: ii+=1 print "Number of genes total: %d" %len(all) print "\nNumber of genes without annotation: (%d (NA))" %ii print "\nNumber of terms with annoation but no IC: %d" %kk print "\nNumber of terms not in %s : %d " %(ontology, dd) print "\nNumber of terms with too high IC : %d " %jj print "\n Number of accepted terms: %d" %cc return gene2terms def genego_matrix(goterms, tmat, gene_ids, term_ids, func=max): ngenes = len(gene_ids) nterms = len(term_ids) gene2indx = {} for i,id in enumerate(gene_ids): gene2indx[id]=i term2indx = {} for i,id in enumerate(term_ids): term2indx[id]=i #G = scipy.empty((nterms, ngenes),'d') G = [] new_gene_index = [] for gene, terms in goterms.items(): g_ind = gene2indx[gene] if len(terms)>0: t_ind = [] new_gene_index.append(g_ind) for term in terms: if term2indx.has_key(term): t_ind.append(term2indx[term]) subsim = tmat[t_ind, :] gene_vec = scipy.apply_along_axis(func, 0, subsim) G.append(gene_vec) return scipy.asarray(G), new_gene_index def genego_sim(gene2go, gene_ids, all_go_terms, STerm, go_term_sim="OA", term_sim="Lin", verbose=False): """Returns go-terms x genes similarity matrix. :input: - gene2go: dict: keys: gene_id, values: go_terms - gene_ids: list of gene ids (entrez ids) - STerm: (go_terms x go_terms) similarity matrix - go_terms_sim: similarity measure between a gene and multiple go terms (max, mean, OA) - term_sim: similarity measure between two go-terms - verbose """ rpy.r.library("GOSim") #gene_ids = gene2go.keys() GG = scipy.empty((len(all_go_terms), len(gene_ids)), 'd') for j,gene in enumerate(gene_ids): for i,go_term in enumerate(all_go_terms): if verbose: print "\nAssigning similarity from %s to terms(gene): %s" %(go_term,gene) GG_ij = rpy.r.getGSim(go_term, gene2go[gene], similarity=go_term_sim, similarityTerm=term_sim, STerm=STerm, verbose=verbose) GG[i,j] = GG_ij return GG def goterm2desc(gotermlist): """Returns the go-terms description keyed by go-term. """ rpy.r.library("GO") term2desc = {} for term in gotermlist: try: desc = rpy.r('Term(GOTERM[["' +str(term)+ '"]])') term2desc[str(term)] = desc except: raise Warning("Description not found for %s\n Mapping incomplete" %term) return term2desc def parents_dag(go_terms, ontology=['BP']): """ Returns a list of lists representation of a GO DAG parents of goterms. make the networkx graph by: G = networkx.Digraph() G = networkx.from_dict_of_lists(edge_dict, G) """ try: rpy.r.library("GOstats") except: raise ImportError, "Gostats" assert(go_terms[0][:3]=='GO:') # go valid namespace go_env = {'BP':rpy.r.GOBPPARENTS, 'MF':rpy.r.GOMFPARENTS, 'CC': rpy.r.GOCCPARENTS} graph = rpy.r.GOGraph(go_terms, go_env[ontology[0]]) edges = rpy.r.edges(graph) edges.pop('all') edge_dict = {} for head, neighbours in edges.items(): for nn in neighbours.values(): if edge_dict.has_key(nn): edge_dict[nn].append(head) else: edge_dict[nn] = [head] return edge_dict def gene_GO_hypergeo_test(genelist,universe="entrezUniverse",ontology="BP",chip = "hgu133a",pval_cutoff=0.01,cond=False,test_direction="over"): #assert(scipy.alltrue([True for i in genelist if i in universe])) universeGeneIds = universe params = rpy.r.new("GOHyperGParams", geneIds=genelist, annotation="hgu133a", ontology=ontology, pvalueCutoff=pval_cutoff, conditional=cond, testDirection=test_direction ) result = rpy.r.summary(rpy.r.hyperGTest(params)) return result, params def data_aff2loc_hgu133a(X, aff_ids, verbose=False): aff_ids = scipy.asarray(aff_ids) if verbose: print "\nNumber of probesets in affy list: %s" %len(aff_ids) import rpy rpy.r.library("hgu133a") trans_table = rpy.r.as_list(rpy.r.hgu133aENTREZID) if verbose: print "Number of entrez ids: %d" %(scipy.asarray(trans_table.values())>0).sum() enz2aff = collections.defaultdict(list) #aff2enz = collections.defaultdict(list) for aff, enz in trans_table.items(): if int(enz)>0 and (aff in aff_ids): enz2aff[enz].append(aff) #aff2enz[aff].append(enz) if verbose: print "\nNumber of translated entrez ids: %d" %len(enz2aff) aff2ind = dict(zip(aff_ids, scipy.arange(len(aff_ids)))) var_x = X.var(0) new_data = [] new_ids = [] m = 0 s = 0 for enz, aff_id_list in enz2aff.items(): index = [aff2ind[aff_id] for aff_id in aff_id_list] if len(index)>1: m+=1 if verbose: pass #print "\nEntrez id: %s has %d probesets" %(enz, len(index)) #print index xsub = X[:,index] choose_this = scipy.argmax(xsub.var(0)) new_data.append(xsub[:,choose_this].ravel()) else: s+=1 new_data.append(X[:,index].ravel()) new_ids.append(enz) if verbose: print "Ids with multiple probesets: %d" %m print "Ids with unique probeset: %d" %s X = scipy.asarray(new_data).T return X, new_ids def R_PLS(x,y,ncomp=3, validation='"LOO"'): rpy.r.library("pls") rpy.r.assign("X", x) rpy.r.assign("Y", y) callstr = "plsr(Y~X, ncomp=" + str(ncomp) + ", validation=" + validation + ")" print callstr result = rpy.r(callstr) return result