import gtk from fluents import dataset, logger, plots, workflow, fluents import geneontology #import gostat from scipy import array, randn, log, ones, zeros import networkx import re EVIDENCE_CODES=[('IMP', 'Inferred from mutant phenotype'), ('IGI', 'Inferred from genetic interaction'), ('IPI', 'Inferred from physical interaction'), ('ISS', 'Inferred from sequence or structure similarity'), ('IDA', 'Inferred from direct assay'), ('IEP', 'Inferred on expression pattern'), ('IEA', 'Inferred from electronic annotation'), ('TAS', 'Traceable author statement'), ('NAS', 'Non-traceable author statement'), ('ND', 'No biological data available'), ('RCA', 'Inferred from reviewed computational analysis'), ('IC', 'Inferred by curator')] DISTANCE_METRICS = [('resnik', 'Resnik'), ('jiang', 'Jiang & Conrath'), ('fussimeg', 'FuSSiMeG')] GO_DATA_DIR = '/home/einarr/data' evidence = None go = None class GoTermView (gtk.Frame): def __init__(self): gtk.Frame.__init__(self) tab = gtk.Table(2, 2, False) self._table = tab self._name = gtk.Label('') self._name.set_line_wrap(True) self._name.set_alignment(0, 0) name_label = gtk.Label('Name:') name_label.set_alignment(0, 0) tab.attach(name_label, 0, 1, 0, 1, gtk.FILL, gtk.FILL, 5, 5) tab.attach(self._name, 1, 2, 0, 1, gtk.FILL|gtk.EXPAND, gtk.FILL, 5, 5) self._def = gtk.TextBuffer() textview = gtk.TextView(self._def) textview.set_wrap_mode(gtk.WRAP_WORD) scrolled_window = gtk.ScrolledWindow() scrolled_window.add(textview) def_label = gtk.Label('Def:') def_label.set_alignment(0.0, 0.0) tab.attach(def_label, 0, 1, 1, 2, gtk.FILL, gtk.FILL, 5, 5) tab.attach(scrolled_window, 1, 2, 1, 2, gtk.FILL|gtk.EXPAND, gtk.FILL|gtk.EXPAND, 5, 5) self.add(tab) self.set_go_term(None) def set_go_term(self, term): if term: self.set_label(term['id']) self._name.set_text(term['name']) self._def.set_text(term['def']) else: self.set_label('GO Term') self._name.set_text('') self._def.set_text('') class GeneOntologyTree (gtk.HPaned): def __init__(self, network): gtk.HPaned.__init__(self) treemodel = geneontology.get_go_treestore(network) self._treemodel = treemodel self._tree_view = gtk.TreeView(treemodel) renderer = gtk.CellRendererText() go_column = gtk.TreeViewColumn('GO ID', renderer, text=0) self._tree_view.insert_column(go_column, 0) renderer = gtk.CellRendererText() go_column = gtk.TreeViewColumn('Name', renderer, text=1) self._tree_view.insert_column(go_column, 1) self._desc_view = GoTermView() self._tree_view.connect('cursor-changed', self._on_cursor_changed) scrolled_window = gtk.ScrolledWindow() scrolled_window.add(self._tree_view) self.add1(scrolled_window) self.add2(self._desc_view) self.show_all() def _on_cursor_changed(self, tree): path, col = self._tree_view.get_cursor() current = self._treemodel.get_iter(path) term = self._treemodel.get_value(current, 2) self._desc_view.set_go_term(term) class GoWorkflow (workflow.Workflow): name = 'Gene Ontology' ident = 'go' description = 'Gene Ontology Workflow. For tree distance measures based '\ + 'on the GO tree.' def __init__(self, app): workflow.Workflow.__init__(self, app) load = workflow.Stage('load', 'Load GO Annotations') load.add_function(LoadGOFunction()) load.add_function(LoadAnnotationsFunction()) load.add_function(LoadTextDatasetFunction()) self.add_stage(load) go = workflow.Stage('go', 'Gene Ontology') go.add_function(SelectGoTermsFunction(self)) go.add_function(GoDistanceFunction()) go.add_function(SaveDistancesFunction()) self.add_stage(go) class LoadGOFunction(workflow.Function): def __init__(self): workflow.Function.__init__(self, 'load-go', 'Load Gene Ontology') def run(self): global go go = geneontology.read_default_go() browser = GeneOntologyTree(go) label = gtk.Label('_Gene Ontology') label.set_use_underline(True) fluents.app['bottom_notebook'].append_page(browser, label) class LoadTextDatasetFunction(workflow.Function): def __init__(self): workflow.Function.__init__(self, 'load-text-ds', 'Load GO Evidence') def run(self): f = open('/home/einarr/data/goa-condensed.ftsv') global evidence evidence = dataset.read_ftsv(f) return [evidence] class LoadAnnotationsFunction(workflow.Function): def __init__(self): workflow.Function.__init__(self, 'load-go-ann', 'Load Annotations') self.annotations = None def run(self): global evidence f = open(GO_DATA_DIR + '/goa-condensed') ev_codes = f.readline().split() go_terms = [] lines = f.readlines() m = zeros((len(lines), len(ev_codes))) for i, l in enumerate(lines): values = l.split() go_terms.append(values[0]) for j, v in enumerate(values[1:]): m[i,j] = float(v.strip()) d = dataset.Dataset(m, [['go-terms', go_terms], ['evidence', ev_codes]], name='GO evidence') evidence = d return [d] class EvidenceCodeFrame(gtk.Frame): def __init__(self): gtk.Frame.__init__(self, 'Evidence Codes') self._ec_buttons = {} vbox = gtk.VBox(len(EVIDENCE_CODES)) for code, desc in EVIDENCE_CODES: btn = gtk.CheckButton('%s (%s)' % (code, desc)) self._ec_buttons[code] = btn vbox.add(btn) self.add(vbox) def set_options(self, options): for code, desc in EVIDENCE_CODES: self._ec_buttons[code].set_active(options[code]) def update_options(self, options): for code, desc in EVIDENCE_CODES: options[code] = self._ec_buttons[code].get_active() return options class DistanceMetricFrame(gtk.Frame): def __init__(self): gtk.Frame.__init__(self, 'Distance Metrics') self._metric_buttons = {} vbox = gtk.VBox() prev = None for code, text in DISTANCE_METRICS: btn = gtk.RadioButton(prev, '%s' % text) self._metric_buttons[code] = btn vbox.add(btn) prev = btn self.add(vbox) def set_options(self, options): self._metric_buttons[options['metric']].set_active(True) def update_options(self, options): for code, text in DISTANCE_METRICS: if self._metric_buttons[code].get_active(): options['metric'] = code return options return options class GoDistanceDialog(gtk.Dialog): def __init__(self): gtk.Dialog.__init__(self, 'GO term distance matrix', None, gtk.DIALOG_MODAL | gtk.DIALOG_DESTROY_WITH_PARENT, (gtk.STOCK_OK, gtk.RESPONSE_OK, gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL)) self._ec_frame = EvidenceCodeFrame() self._metric_frame = DistanceMetricFrame() self.vbox.add(self._ec_frame) self.vbox.add(self._metric_frame) def run(self): self.vbox.show_all() return gtk.Dialog.run(self) def set_options(self, options): self._ec_frame.set_options(options) self._metric_frame.set_options(options) def update_options(self, options): self._ec_frame.update_options(options) self._metric_frame.update_options(options) return options def set_editable(self, editable): self._ec_frame.set_sensitive(editable) self._metric_frame.set_sensitive(editable) class NumericDict(dict): def __init__(self): dict.__init__(self) def __getitem__(self, key): retval = 0 try: retval = dict.__getitem__(self, key) except: retval = 0.0 return retval class SelectGoTermsFunction(workflow.Function): def __init__(self, wf): workflow.Function.__init__(self, 'go-select', 'Select GO Terms') self.wf = wf def run(self): self.wf.project.set_selection('go-terms', set(['GO:0007582', 'GO:0008150', 'GO:0051704', 'GO:0044419'])) class GoDistanceFunction(workflow.Function): def __init__(self): workflow.Function.__init__(self, 'go-dist', 'GO term distance matrix') self.options = GoDistanceOptions() def resnik_distance_matrix(self, selection, ic): size = len(selection['go-terms']) m = zeros((size, size)) # Create resnik distance matrix ids = list(selection['go-terms']) for i, t1 in enumerate(ids): for j, t2 in enumerate(ids): term1 = go.by_id[t1] term2 = go.by_id[t2] subsumer = go.subsumer(term1, term2) print "%s - %s - %s" % (t1, subsumer['id'], t2) m[i, j] = ic[t1] + ic[t2] - 2.0 * ic[subsumer['id']] ds = dataset.Dataset(m, (('go-terms', ids), ('_go-terms', ids)), 'Resnik') return ds def run(self, x, selection): global evidence, go self.options = self.show_gui(self.options) if not selection.has_key('go-terms') or len(selection['go-terms']) == 0: logger.log('warning', 'No GO terms selected. Cannot make distance matrix.') codes = [c for c, d in EVIDENCE_CODES if self.options[c]] ev_indices = evidence.get_indices('evidence', codes) ann_count_matrix = evidence._array[:, ev_indices].sum(1) total_ann = ann_count_matrix.sum(0) annotations = NumericDict() ic = NumericDict() # Insert annotations into dict for i, v in enumerate(evidence.get_identifiers('go-terms')): annotations[v] = ann_count_matrix[i] # Accumulate annotations for term in reversed(networkx.topological_sort(go)): for parent in go.in_neighbors(term): annotations[parent['id']] += annotations[term['id']] # Create information content dictionary for term, count in annotations.items(): ic[term] = -log(count / total_ann) return [self.resnik_distance_matrix(selection, ic)] def show_gui(self, options, edit=True): dialog = GoDistanceDialog() dialog.set_options(self.options) dialog.show_all() dialog.set_editable(edit) response = dialog.run() dialog.hide() if response == gtk.RESPONSE_OK: return dialog.update_options(self.options) else: return options class SaveDistancesFunction(workflow.Function): def __init__(self): workflow.Function.__init__(self, 'save-matrix', 'Save Matrix') def run(self, ds): filename = '/home/einarr/data/output.ftsv' fd = open(filename, 'w') dataset.write_ftsv(fd, ds) fd.close() class Options(dict): def __init__(self): dict.__init__(self) class GoDistanceOptions(Options): def __init__(self): Options.__init__(self) for code, desc in EVIDENCE_CODES: self[code] = True self['metric'] = 'fussimeg'