import sys,os import webbrowser from fluents import logger, plots,workflow,dataset from fluents.lib import blmfuncs,nx_utils,validation,engines,cx_stats,cx_utils import gobrowser, geneontology import scipy import networkx as nx class SmallTestWorkflow(workflow.Workflow): name = 'Smokers' ident = 'smokers' description = 'A small test workflow for gene expression analysis.' def __init__(self): workflow.Workflow.__init__(self) # DATA IMPORT load = workflow.Stage('load', 'Data') load.add_function(DatasetLoadFunctionSmokerSmall()) load.add_function(DatasetLoadFunctionSmokerMedium()) load.add_function(DatasetLoadFunctionSmokerFull()) load.add_function(DatasetLoadFunctionSmokerGO()) #load.add_function(DatasetLoadFunctionCYCLE()) self.add_stage(load) # PREPROCESSING prep = workflow.Stage('prep', 'Preprocessing') prep.add_function(LogFunction()) self.add_stage(prep) # NETWORK PREPROCESSING net = workflow.Stage('net', 'Network integration') net.add_function(DiffKernelFunction()) net.add_function(ModKernelFunction()) #net.add_function(RandDiffKernelFunction()) self.add_stage(net) # BLM's model = workflow.Stage('models', 'Models') model.add_function(blmfuncs.PCA()) model.add_function(blmfuncs.PLS()) model.add_function(blmfuncs.LPLS()) #model.add_function(bioconFuncs.SAM(app)) self.add_stage(model) query = workflow.Stage('query', 'Gene Query') query.add_function(NCBIQuery()) query.add_function(KEGGQuery()) self.add_stage(query) # Gene Ontology go = workflow.Stage('go', 'Gene Ontology') go.add_function(gobrowser.LoadGOFunction()) go.add_function(gobrowser.GOWeightFunction()) go.add_function(gobrowser.DistanceToSelectionFunction()) go.add_function(gobrowser.TTestFunction()) go.add_function(gobrowser.PlotDagFunction()) self.add_stage(go) # EXTRA PLOTS #plt = workflow.Stage('net', 'Network') #plt.add_function(nx_analyser.KeggNetworkAnalyser()) #self.add_stage(plt) logger.log('debug', 'Small test workflow is now active') class DatasetLoadFunctionSmokerSmall(workflow.Function): """Loader for all ftsv files of smokers small datasets.""" def __init__(self): workflow.Function.__init__(self, 'load_small', 'Smoker (Small)') def run(self): path = 'data/smokers-small/' files = os.listdir(path) out = [] for fname in files: if fname.endswith('.ftsv'): input_file = open(os.path.join(path, fname)) out.append(dataset.read_ftsv(input_file)) return out class DatasetLoadFunctionSmokerMedium(workflow.Function): """Loader for all ftsv files of smokers small datasets.""" def __init__(self): workflow.Function.__init__(self, 'load_medium', 'Smoker (Medium)') def run(self): path = 'data/smokers-medium/' files = os.listdir(path) out = [] for fname in files: if fname.endswith('.ftsv'): input_file = open(os.path.join(path, fname)) out.append(dataset.read_ftsv(input_file)) return out class DatasetLoadFunctionSmokerFull(workflow.Function): """Loader for all ftsv files of smokers small datasets.""" def __init__(self): workflow.Function.__init__(self, 'load_full', 'Smoker (Full)') def run(self): path = 'data/smokers-full/' files = os.listdir(path) out = [] for fname in files: if fname.endswith('.ftsv'): input_file = open(os.path.join(path, fname)) out.append(dataset.read_ftsv(input_file)) return out class DatasetLoadFunctionSmokerGO(workflow.Function): """Loader for all ftsv files of smokers small datasets.""" def __init__(self): workflow.Function.__init__(self, 'load_go', 'Smoker (GO)') def run(self): path = 'data/smokers-go/' files = os.listdir(path) out = [] for fname in files: if fname.endswith('.ftsv'): input_file = open(os.path.join(path, fname)) out.append(dataset.read_ftsv(input_file)) return out class DatasetLoadFunctionCYCLE(workflow.Function): """Loader for pickled CYCLE datasets.""" def __init__(self): workflow.Function.__init__(self, 'load_data', 'Cycle') def run(self): filename='fluents/data/CYCLE' if filename: return dataset.from_file(filename) ##### WORKFLOW SPECIFIC FUNCTIONS ###### class DiffKernelFunction(workflow.Function): def __init__(self): workflow.Function.__init__(self, 'diffkernel', 'Diffusion') def run(self, x, a): """x is gene expression data, a is the network. """ #sanity check: g = a.asnetworkx() genes = x.get_identifiers(x.get_dim_name(1), sorted=True) W = nx.adj_matrix(g, nodelist=genes) X = x.asarray() Xc, mn_x = cx_utils.mat_center(X, ret_mn=True) out = [] alpha=1.0 beta = 1.0 K = nx_utils.K_diffusion(W, alpha=alpha, beta=beta,normalised=True) Xp = scipy.dot(Xc, K) + mn_x # dataset row_ids = (x.get_dim_name(0), x.get_identifiers(x.get_dim_name(0), sorted=True)) col_ids = (x.get_dim_name(1), x.get_identifiers(x.get_dim_name(1), sorted=True)) xout = dataset.Dataset(Xp, (row_ids, col_ids), name=x.get_name()+'_diff'+str(alpha)) out.append(xout) return out class RandDiffKernelFunction(workflow.Function): def __init__(self): workflow.Function.__init__(self, 'diffkernel', 'Rand. Diff.') def run(self, x, a): """x is gene expression data, a is the network. """ #sanity check: g = a.asnetworkx() genes = x.get_identifiers(x.get_dim_name(1)) # randomise nodelist genes = [genes[i] for i in cx_utils.randperm(x.shape[1])] W = nx.adj_matrix(g, nodelist=genes) X = x.asarray() Xc, mn_x = cx_utils.mat_center(X, ret_mn=True) out = [] alpha=1. beta = 1.0 K = nx_utils.K_diffusion(W, alpha=alpha, beta=beta,normalised=True) Xp = scipy.dot(Xc, K) + mn_x # dataset row_ids = (x.get_dim_name(0), x.get_identifiers(x.get_dim_name(0), sorted=True)) col_ids = (x.get_dim_name(1), x.get_identifiers(x.get_dim_name(1), sorted=True)) xout = dataset.Dataset(Xp, (row_ids, col_ids), name=x.get_name()+'_diff'+str(alpha)) out.append(xout) return out class ModKernelFunction(workflow.Function): def __init__(self): workflow.Function.__init__(self, 'mokernel', 'Modularity') def run(self,x,a): X = x.asarray() g = a.asnetworkx() genes = x.get_identifiers(x.get_dim_name(1), sorted=True) W = nx.adj_matrix(g, nodelist=genes) out=[] alpha=.2 Xc,mn_x = cx_utils.mat_center(X, ret_mn=True) K = nx_utils.K_modularity(W, alpha=alpha) Xp = scipy.dot(Xc, K) Xp = Xp + mn_x # dataset row_ids = (x.get_dim_name(0), x.get_identifiers(x.get_dim_name(0), sorted=True)) col_ids = (x.get_dim_name(1), x.get_identifiers(x.get_dim_name(1), sorted=True)) xout = dataset.Dataset(Xp, (row_ids,col_ids), name=x.get_name()+'_mod'+str(alpha)) out.append(xout) return out class NCBIQuery(workflow.Function): def __init__(self, gene_id_name='gene_id'): self._gene_id_name = gene_id_name workflow.Function.__init__(self, 'query', 'NCBI') def run(self, selection): if not selection.has_key(self._gene_id_name): logger.log("notice", "Expected gene ids: %s, but got: %s" %(self._gene_id_name, selection.keys())) return None if len(selection[self._gene_id_name])==0: logger.log("notice", "No selected genes to query") return None logger.log("notice", "No selected genes to query") base = 'http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?' options = {r'&db=' : 'gene', r'&cmd=' : 'retrieve', r'&dopt=' : 'full_report'} gene_str = ''.join([gene + "+" for gene in selection[self._gene_id_name]]) options[r'&list_uids='] = gene_str[:-1] opt_str = ''.join([key+value for key,value in options.items()]) web_str = base + opt_str webbrowser.open(web_str) class KEGGQuery(workflow.Function): def __init__(self, org='hsa', gene_id_name='gene_id'): self._org=org self._gene_id_name = gene_id_name workflow.Function.__init__(self, 'query', 'KEGG') def run(self, selection): if not selection.has_key(self._gene_id_name): logger.log("notice", "Expected gene ids: %s, but got. %s" %(self._gene_id_name, selection.keys())) return None if len(selection[self._gene_id_name])==0: logger.log("notice", "No selected genes to query") return None base = r'http://www.genome.jp/dbget-bin/www_bget?' gene_str = ''.join([gene + "+" for gene in selection[self._gene_id_name]]) gene_str = gene_str[:-1] gene_str = self._org + "+" + gene_str web_str = base + gene_str webbrowser.open(web_str) class LogFunction(workflow.Function): def __init__(self): workflow.Function.__init__(self, 'log', 'Log') def run(self, data): logger.log('notice', 'Taking the log of dataset %s' % data.get_name()) d = data.copy() d._array = scipy.log(d._array) d._name = 'log(%s)' % data.get_name() return [d]