import logger from scipy import array,take,asarray,shape,nonzero import project from itertools import izip class Dataset: """Dataset base class. A Dataset is an n-way array with defined string identifiers across all dimensions. """ def __init__(self,input_array,def_list): self._data = asarray(input_array) dims = shape(self._data) self.def_list = def_list self._ids_set = set() self.ids={} self._dim_num = {} self._dim_names = [] if len(dims)==1: # a vector is defined to be column vector! self.dims = (dims[0],1) else: self.dims = dims if len(def_list)!=len(self.dims): raise ValueError,"array dims and identifyer mismatch" for axis,(dim_name,ids) in enumerate(def_list): enum_ids = {} #if dim_name not in project.c_p.dim_names: # dim_name = project.c_p.suggest_dim_name(dim_name) if not ids: logger.log('debug','Creating identifiers along: '+ str(dim_name)) ids = self._create_identifiers(axis) for num,name in enumerate(ids): enum_ids[name] = num self.ids[dim_name] = enum_ids self._ids_set = self._ids_set.union(set(ids)) self._dim_num[dim_name] = axis self._dim_names.append(dim_name) for df,d in izip(def_list,self.dims): #check that data and labels match df=df[1] if len(df)!=d and df: raise ValueError,"dim size and identifyer mismatch" def names(self,axis=0): """Returns identifier names of a dimension. NB: sorted by values! OK? necessary?""" if type(axis)==int: dim_name = self._dim_names[axis] elif type(axis)==str: dim_name = axis if dim_name not in self._dim_names: raise ValueError, dim_name + " not a dimension in dataset" items = self.ids[dim_name].items() backitems=[ [v[1],v[0]] for v in items] backitems.sort() sorted_ids=[ backitems[i][1] for i in range(0,len(backitems))] return sorted_ids def extract_data(self,ids,dim_name): """Extracts data along a dimension by identifiers""" new_def_list = self.def_list[:] ids_index = [self.ids[dim_name][id_name] for id_name in ids] dim_number = self._dim_num[dim_name] try: out_data = take(self._data,ids_index,axis=dim_number) except: raise ValueError new_def_list[dim_number][1] = ids extracted_data = Dataset(out_data,def_list=new_def_list,parents=self.parents) return extracted_data def _create_identifiers(self,axis): """Creates identifiers along an axis""" n_dim = self.dims[axis] return [str(axis) + '_' + str(i) for i in range(n_dim)] def extract_id_from_index(self,dim_name,index): """Returns a set of ids from array/list of indexes.""" dim_ids = self.ids[dim_name] if type(index)==int: index = [index] return set([id for id,ind in dim_ids.items() if ind in index]) def extract_index_from_id(self,dim_name,id): """Returns an array of indexes from a set/list of identifiers (or a single id)""" dim_ids = self.ids[dim_name] return array([ind for name,ind in dim_ids.items() if name in id]) class CategoryDataset(Dataset): def __init__(self,array,def_list): Dataset.__init__(self,array,def_list) def get_elements_by_category(self,dim,category): """Returns all elements along input dim belonging to category. Assumes a two-dim category data only! """ if type(category)!=list: raise ValueError, "category must be list" gene_ids = [] axis_dim = self._dim_num[dim] cat_index = self.extract_index_from_id(category) for ind in cat_index: if axis_dim==0: gene_indx = nonzero(self._data[:,ind]) elif axis_dim==1: gene_indx = nonzero(self._data[ind,:]) else: ValueError, "Only support for 2-dim data" gene_ids.append(self.extract_id_from_index(dim,gene_index)) return gene_ids class Selection: """Handles selected identifiers along each dimension of a dataset""" def __init__(self): self.current_selection={}