import sys,os import webbrowser from fluents import logger, plots,workflow,dataset from fluents.lib import blmfuncs,nx_utils,validation,engines,cx_stats,cx_utils import scipy class SmallTestWorkflow(workflow.Workflow): name = 'SmallTest' ident = 'smalltest' description = 'A small test workflow for gene expression analysis' def __init__(self, app): workflow.Workflow.__init__(self, app) # DATA IMPORT load = workflow.Stage('load', 'Data') load.add_function(DatasetLoadFunctionSmokerSmall()) #load.add_function(DatasetLoadFunctionCYCLE()) self.add_stage(load) # NETWORK PREPROCESSING net = workflow.Stage('net', 'Network integration') net.add_function(DiffKernelFunction()) net.add_function(ModKernelFunction()) #net.add_function(RandDiffKernelFunction()) self.add_stage(net) # BLM's model = workflow.Stage('models', 'Models') model.add_function(blmfuncs.PCA()) model.add_function(blmfuncs.PLS()) #model.add_function(bioconFuncs.SAM(app)) self.add_stage(model) query = workflow.Stage('query', 'Gene Query') query.add_function(NCBIQuery()) query.add_function(KEGGQuery()) self.add_stage(query) # EXTRA PLOTS #plt = workflow.Stage('net', 'Network') #plt.add_function(nx_analyser.KeggNetworkAnalyser()) #self.add_stage(plt) logger.log('debug', 'Small test workflow is now active') class DatasetLoadFunctionSmokerSmall(workflow.Function): """Loader for all ftsv files of smokers small datasets.""" def __init__(self): workflow.Function.__init__(self, 'load_data', 'Smoker') def run(self): path = 'data/smokers-small/' files = os.listdir(path) out = [] for fname in files: if fname.endswith('.ftsv'): input_file = open(os.path.join(path, fname)) out.append(dataset.read_ftsv(input_file)) return out class DatasetLoadFunctionCYCLE(workflow.Function): """Loader for pickled CYCLE datasets.""" def __init__(self): workflow.Function.__init__(self, 'load_data', 'Cycle') def run(self): filename='fluents/data/CYCLE' if filename: return dataset.from_file(filename) ##### WORKFLOW SPECIFIC FUNCTIONS ###### class DiffKernelFunction(workflow.Function): def __init__(self): workflow.Function.__init__(self, 'diffkernel', 'Diffusion') def run(self, x, a): """x is gene expression data, a is the network. """ #sanity check: g = a.asnetworkx() genes = x.get_identifiers(x.get_dim_name(1), sorted=True) W = nx.adj_matrix(g, nodelist=genes) X = x.asarray() Xc, mn_x = cx_utils.mat_center(X, ret_mn=True) out = [] alpha=1.0 beta = 1.0 K = nx_utils.K_diffusion(W, alpha=alpha, beta=beta,normalised=True) Xp = scipy.dot(Xc, K) + mn_x # dataset row_ids = (x.get_dim_name(0), x.get_identifiers(x.get_dim_name(0), sorted=True)) col_ids = (x.get_dim_name(1), x.get_identifiers(x.get_dim_name(1), sorted=True)) xout = dataset.Dataset(Xp, (row_ids, col_ids), name=x.get_name()+'_diff'+str(alpha)) out.append(xout) return out class RandDiffKernelFunction(workflow.Function): def __init__(self): workflow.Function.__init__(self, 'diffkernel', 'Rand. Diff.') def run(self, x, a): """x is gene expression data, a is the network. """ #sanity check: g = a.asnetworkx() genes = x.get_identifiers(x.get_dim_name(1)) # randomise nodelist genes = [genes[i] for i in cx_utils.randperm(x.shape[1])] W = nx.adj_matrix(g, nodelist=genes) X = x.asarray() Xc, mn_x = cx_utils.mat_center(X, ret_mn=True) out = [] alpha=1. beta = 1.0 K = nx_utils.K_diffusion(W, alpha=alpha, beta=beta,normalised=True) Xp = scipy.dot(Xc, K) + mn_x # dataset row_ids = (x.get_dim_name(0), x.get_identifiers(x.get_dim_name(0), sorted=True)) col_ids = (x.get_dim_name(1), x.get_identifiers(x.get_dim_name(1), sorted=True)) xout = dataset.Dataset(Xp, (row_ids, col_ids), name=x.get_name()+'_diff'+str(alpha)) out.append(xout) return out class ModKernelFunction(workflow.Function): def __init__(self): workflow.Function.__init__(self, 'mokernel', 'Modularity') def run(self,x,a): X = x.asarray() g = a.asnetworkx() genes = x.get_identifiers(x.get_dim_name(1), sorted=True) W = nx.adj_matrix(g, nodelist=genes) out=[] alpha=.2 Xc,mn_x = cx_utils.mat_center(X, ret_mn=True) K = nx_utils.K_modularity(W, alpha=alpha) Xp = scipy.dot(Xc, K) Xp = Xp + mn_x # dataset row_ids = (x.get_dim_name(0), x.get_identifiers(x.get_dim_name(0), sorted=True)) col_ids = (x.get_dim_name(1), x.get_identifiers(x.get_dim_name(1), sorted=True)) xout = dataset.Dataset(Xp, (row_ids,col_ids), name=x.get_name()+'_mod'+str(alpha)) out.append(xout) return out class NCBIQuery(workflow.Function): def __init__(self): workflow.Function.__init__(self, 'query', 'NCBI') def run(self, selection): base = 'http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?' options = {r'&db=' : 'gene', r'&cmd=' : 'retrieve', r'&dopt=' : 'full_report'} gene_str = ''.join([gene + "+" for gene in selection['gene_id']]) options[r'&list_uids='] = gene_str[:-1] opt_str = ''.join([key+value for key,value in options.items()]) web_str = base + opt_str webbrowser.open(web_str) class KEGGQuery(workflow.Function): def __init__(self): workflow.Function.__init__(self, 'query', 'KEGG') def run(self, selection): if not selection.has_key('genes') \ or not selection.has_key('orfs'): return None base = r'http://www.genome.jp/dbget-bin/www_bget?' options = {'org' : 'gene'} org = 'hsa' gene_str = ''.join([gene + "+" for gene in selection['gene_id']]) gene_str = gene_str[:-1] gene_str = org + "+" + gene_str web_str = base + gene_str webbrowser.open(web_str)