import gtk from fluents import dataset, logger, plots, workflow #import geneontology #import gostat from scipy import array, randn, log, ones import cPickle import networkx class TestWorkflow (workflow.Workflow): name = 'Test Workflow' ident = 'test' description = 'This workflow currently serves as a general testing workflow.' def __init__(self): workflow.Workflow.__init__(self) load = workflow.Stage('load', 'Test Data') load.add_task(TestDataTask) self.add_stage(load) class TestDataTask(workflow.Task): name = "Test data" def __init__(self, input): workflow.Task.__init__(self, input) def run(self): logger.log('notice', 'Injecting foo test data') x = randn(500,15) X = dataset.Dataset(x) p = plots.ScatterPlot(X, X, 'rows', 'rows', '0_1', '0_2',name='scatter') # p2 = plots.ScatterMarkerPlot(X, X, 'rows', 'rows', '0_1', '0_2',name='marker') graph = networkx.XGraph() for x in 'ABCDEF': for y in 'ADE': graph.add_edge(x, y, 3) ds = dataset.GraphDataset(array(networkx.adj_matrix(graph))) ds_plot = plots.NetworkPlot(ds) cds = dataset.CategoryDataset(ones([3, 3])) ds_scatter = plots.ScatterMarkerPlot(ds, ds, 'rows_0', 'rows_0', '0_1', '0_2') lp = plots.LineViewPlot(X,major_axis=0) vp = plots.VennPlot() self.datasets = [p] return [X, ds, p, ds_plot, ds_scatter, p2, cds, lp, vp]