""" Module for Gene ontology related functions called in R""" import scipy import rpy silent_eval = rpy.with_mode(rpy.NO_CONVERSION, rpy.r) def get_term_sim(termlist, method = "JiangConrath", verbose=False): """Returns the similariy matrix between go-terms. Arguments: termlist: character vector of GO terms method: one of ("JiangConrath","Resnik","Lin","CoutoEnriched","CoutoJiangConrath","CoutoResnik","CoutoLin") verbose: print out various information or not """ _methods = ("JiangConrath","Resnik","Lin","CoutoEnriched","CoutoJiangConrath","CoutoResnik","CoutoLin") assert(method in _methods) assert(termlist[0][:2]=='GO') rpy.r.library("GOSim") return rpy.r.getTermSim(termlist, method = method, verbose = verbose) def get_gene_sim(genelist, similarity='OA', distance="Resnick"): rpy.r.library("GOSim") rpy.r.assign("ids", genelist) silent_eval('a<-getGeneSim(ids)', verbose=FALSE) def goterms_from_gene(genelist, ontology=['BP'], garbage = ['IEA', 'ISS', 'ND']): """ Returns the go-terms from a specified genelist (Entrez id). """ rpy.r.library("GO") _CODES = {"IMP" : "inferred from mutant phenotype", "IGI" : "inferred from genetic interaction", "IPI" :"inferred from physical interaction", "ISS" : "inferred from sequence similarity", "IDA" : "inferred from direct assay", "IEP" : "inferred from expression pattern", "IEA" : "inferred from electronic annotation", "TAS" : "traceable author statement", "NAS" : "non-traceable author statement", "ND" : "no biological data available", "IC" : "inferred by curator" } _ONTOLOGIES = ['BP', 'CC', 'MF'] assert(scipy.all([(code in _CODES) for code in garbage])) assert(scipy.all([(ont in _ONTOLOGIES) for ont in ontology])) have_these = rpy.r('as.list(GOTERM)').keys() goterms = {} for gene in genelist: goterms[gene] = [] info = rpy.r('GOENTREZID2GO[["' + str(gene) + '"]]') #print info if info: for term, desc in info.items(): if term not in have_these: print "GO miss:" print term if desc['Ontology'] in ontology and desc['Evidence'] not in garbage: goterms[gene].append(term) return goterms def genego_matrix(goterms, tmat, gene_ids, term_ids, func=min): ngenes = len(gene_ids) nterms = len(term_ids) gene2indx = {} for i,id in enumerate(gene_ids): gene2indx[id]=i term2indx = {} for i,id in enumerate(term_ids): term2indx[id]=i #G = scipy.empty((nterms, ngenes),'d') G = [] newindex = [] for gene, terms in goterms.items(): g_ind = gene2indx[gene] if len(terms)>0: t_ind = [] newindex.append(g_ind) for term in terms: if term2indx.has_key(term): t_ind.append(term2indx[term]) print t_ind subsim = tmat[t_ind, :] gene_vec = scipy.apply_along_axis(func, 0, subsim) G.append(gene_vec) return scipy.asarray(G), newindex def goterm2desc(gotermlist): """Returns the go-terms description keyed by go-term """ rpy.r.library("GO") term2desc = {} for term in gotermlist: try: desc = rpy.r('Term(GOTERM[["' +str(term)+ '"]])') term2desc[str(term)] = desc except: raise Warning("Description not found for %s\n Mapping incomplete" %term) return term2desc def parents_dag(go_terms, ontology=['BP']): """ Returns a list of lists representation of a GO DAG parents of goterms. make the networkx graph by: G = networkx.Digraph() G = networkx.from_dict_of_lists(edge_dict, G) """ try: rpy.r.library("GOstats") except: raise ImportError, "Gostats" assert(go_terms[0][:3]=='GO:') # go valid namespace go_env = {'BP':rpy.r.GOBPPARENTS, 'MF':rpy.r.GOMFPARENTS, 'CC': rpy.r.GOCCPARENTS} graph = rpy.r.GOGraph(go_terms, go_env[ontology[0]]) edges = rpy.r.edges(graph) edges.pop('all') edge_dict = {} for head, neighbours in edges.items(): for nn in neighbours.values(): if edge_dict.has_key(nn): edge_dict[nn].append(head) else: edge_dict[nn] = [head] return edge_dict def gene_GO_hypergeo_test(genelist, universe, ontology = ['BP']): pvals = geneGoHyperGeoTest(entrezGeneIds, lib=None, ontology=ontology[0], universe=universe) return pvals