"""Specialised plots for functions defined in blmfuncs.py. fixme: -- If scatterplot is not inited with a colorvector there will be no colorbar, but when adding colors the colorbar shoud be created. """ from matplotlib import cm import gtk import fluents from fluents import plots import scipy from scipy import dot,sum,diag,arange,log,mean,newaxis,sqrt class BlmScatterPlot(plots.ScatterPlot): """Scatter plot used for scores and loadings in bilinear models.""" def __init__(self, title, model, absi=0, ordi=1, part_name='T', color_by=None): if model.model.has_key(part_name)!=True: raise ValueError("Model part: %s not found in model" %mod_param) self._T = model.model[part_name] if self._T.shape[1]==1: logger.log('notice', 'Scores have only one component') absi= ordi = 0 self._absi = absi self._ordi = ordi self._colorbar = None self._cmap = cm.jet dataset_1 = model.as_dataset(part_name) id_dim = dataset_1.get_dim_name(0) sel_dim = dataset_1.get_dim_name(1) id_1, = dataset_1.get_identifiers(sel_dim, [absi]) id_2, = dataset_1.get_identifiers(sel_dim, [ordi]) col = 'b' if model.model.has_key(color_by): col = model.model[color_by].ravel() plots.ScatterPlot.__init__(self, dataset_1, dataset_1, id_dim, sel_dim, id_1, id_2 ,c=col ,s=40 , name=title) self.sc.set_cmap(self._cmap) self.add_pc_spin_buttons(self._T.shape[1], absi, ordi) self._key_press = self.canvas.mpl_connect( 'key_press_event', self._on_key_press) def _update_color_from_dataset(self, data): """Overriding scatter for testing of colormaps. """ is_category = False array = data.asarray() #only support for 2d-arrays: try: m, n = array.shape except: raise ValueError, "No support for more than 2 dimensions." # is dataset a vector or matrix? if not n==1: # we have a category dataset if isinstance(data, fluents.dataset.CategoryDataset): is_category = True map_vec = scipy.dot(array, scipy.diag(scipy.arange(n))).sum(1) else: map_vec = array.sum(1) else: map_vec = array.ravel() # update facecolors self.sc.set_array(map_vec) self.sc.set_clim(map_vec.min(), map_vec.max()) if is_category: cmap = cm.Paired else: cmap = cm.jet self.sc.set_cmap(cmap) self.sc.update_scalarmappable() #sets facecolors from array self.canvas.draw() def _on_key_press(self, event): if event.key=='c': self.toggle_colorbar() def set_facecolor(self, colors): """Set patch facecolors. """ pass def set_alphas(self, alphas): """Set alpha channel for all patches.""" pass def set_sizes(self, sizes): """Set patch sizes.""" pass def toggle_colorbar(self): if self._colorbar==None: if self.sc._A!=None: # we need colormapping # get axes original position self._ax_last_pos = self.axes.get_position() self._colorbar = self.fig.colorbar(self.sc) self._colorbar.draw_all() self.canvas.draw() else: # remove colorbar # remove, axes, observers, colorbar instance, and restore viewlims cb, ax = self.sc.colorbar self.fig.delaxes(ax) self.sc.observers = [obs for obs in self.sc.observers if obs !=self._colorbar] self._colorbar = None self.sc.colorbar = None self.axes.set_position(self._ax_last_pos) self.canvas.draw() def add_pc_spin_buttons(self, amax, absi, ordi): sb_a = gtk.SpinButton(climb_rate=1) sb_a.set_range(1, amax) sb_a.set_value(absi+1) sb_a.set_increments(1, 5) sb_a.connect('value_changed', self.set_absicca) sb_o = gtk.SpinButton(climb_rate=1) sb_o.set_range(1, amax) sb_o.set_value(ordi+1) sb_o.set_increments(1, 5) sb_o.connect('value_changed', self.set_ordinate) hbox = gtk.HBox() gtk_label_a = gtk.Label("A:") gtk_label_o = gtk.Label(" O:") toolitem = gtk.ToolItem() toolitem.set_expand(False) toolitem.set_border_width(2) toolitem.add(hbox) hbox.pack_start(gtk_label_a) hbox.pack_start(sb_a) hbox.pack_start(gtk_label_o) hbox.pack_start(sb_o) self._toolbar.insert(toolitem, -1) toolitem.set_tooltip(self._toolbar.tooltips, "Set Principal component") self._toolbar.show_all() #do i need this? def set_absicca(self, sb): self._absi = sb.get_value_as_int() - 1 xy = self._T[:,[self._absi, self._ordi]] self.xaxis_data = xy[:,0] self.yaxis_data = xy[:,1] self.sc._offsets = xy self.selection_collection._offsets = xy self.canvas.draw_idle() pad = abs(self.xaxis_data.min()-self.xaxis_data.max())*0.05 new_lims = (self.xaxis_data.min()+pad, self.xaxis_data.max()+pad) self.axes.set_xlim(new_lims, emit=True) self.canvas.draw_idle() def set_ordinate(self, sb): self._ordi = sb.get_value_as_int() - 1 xy = self._T[:,[self._absi, self._ordi]] self.xaxis_data = xy[:,0] self.yaxis_data = xy[:,1] self.sc._offsets = xy self.selection_collection._offsets = xy pad = abs(self.yaxis_data.min()-self.yaxis_data.max())*0.05 new_lims = (self.yaxis_data.min()+pad, self.yaxis_data.max()+pad) self.axes.set_ylim(new_lims, emit=True) self.canvas.draw_idle() def show_labels(self, index=None): if self._text_labels == None: x = self.xaxis_data y = self.yaxis_data self._text_labels = {} for name, n in self.dataset_1[self.current_dim].items(): txt = self.axes.text(x[n],y[n], name) txt.set_visible(False) self._text_labels[n] = txt if index!=None: self.hide_labels() for indx,txt in self._text_labels.items(): if indx in index: txt.set_visible(True) self.canvas.draw() def hide_labels(self): for txt in self._text_labels.values(): txt.set_visible(False) self.canvas.draw() class PcaScorePlot(BlmScatterPlot): def __init__(self, model, absi=0, ordi=1): title = "Pca scores (%s)" %model._dataset['X'].get_name() BlmScatterPlot.__init__(self, title, model, absi, ordi, 'T') class PcaLoadingPlot(BlmScatterPlot): def __init__(self, model, absi=0, ordi=1): title = "Pca loadings (%s)" %model._dataset['X'].get_name() BlmScatterPlot.__init__(self, title, model, absi, ordi, part_name='P', color_by='p_tsq') class PlsScorePlot(BlmScatterPlot): def __init__(self, model, absi=0, ordi=1): title = "Pls scores (%s)" %model._dataset['X'].get_name() BlmScatterPlot.__init__(self, title, model, absi, ordi, 'T') class PlsLoadingPlot(BlmScatterPlot): def __init__(self, model, absi=0, ordi=1): title = "Pca loadings (%s)" %model._dataset['X'].get_name() BlmScatterPlot.__init__(self, title, model, absi, ordi, part_name='P', color_by='w_tsq') class LineViewXc(plots.LineViewPlot): """A line view of centered raw data """ def __init__(self, model, name='Profiles'): # copy, center, plot x = model._dataset['X'].copy() x._array = x._array - mean(x._array,0)[newaxis] plots.LineViewPlot.__init__(self, x, 1, None, name) class ParalellCoordinates(plots.Plot): """Parallell coordinates for score loads with many comp. """ def __init__(self, model, p='loads'): pass class PlsQvalScatter(plots.ScatterPlot): """A vulcano like plot of loads vs qvals """ def __init__(self, model, pc=0): if not model.model.has_key('w_tsq'): return None self._W = model.model['P'] dataset_1 = model.as_dataset('P') dataset_2 = model.as_dataset('w_tsq') id_dim = dataset_1.get_dim_name(0) #genes sel_dim = dataset_1.get_dim_name(1) #_comp sel_dim_2 = dataset_2.get_dim_name(1) #_zero_dim id_1, = dataset_1.get_identifiers(sel_dim, [0]) id_2, = dataset_2.get_identifiers(sel_dim_2, [0]) if model.model.has_key('w_tsq'): col = model.model['w_tsq'].ravel() #col = normalise(col) else: col = 'g' plots.ScatterPlot.__init__(self, dataset_1, dataset_2, id_dim, sel_dim, id_1, id_2, c=col, s=20, sel_dim_2=sel_dim_2, name='Load Volcano') class PredictionErrorPlot(plots.Plot): """A boxplot of prediction error vs. comp. number. """ def __init__(self, model, name="Prediction Error"): if not model.model.has_key('sep'): logger.log('notice', 'Model has no calculations of sep') return None plots.Plot.__init__(self, name) self._frozen = True self.current_dim = 'johndoe' self.axes = self.fig.add_subplot(111) # draw sep = model.model['sep'] aopt = model.model['aopt'] bx_plot_lines = self.axes.boxplot(sqrt(sep)) aopt_marker = self.axes.axvline(aopt, linewidth=10, color='r',zorder=0, alpha=.5) # add canvas self.add(self.canvas) self.canvas.show() def set_current_selection(self, selection): pass class InfluencePlot(plots.ScatterPlot): """ """ pass class RMSEPPlot(plots.BarPlot): def __init__(self, model, name="RMSEP"): if not model.model.has_key('rmsep'): logger.log('notice', 'Model has no calculations of sep') return dataset = model.as_dataset('rmsep') plots.BarPlot.__init__(self, dataset, name=name) def normalise(x): """Scale vector x to [0,1] """ x = x - x.min() x = x/x.max() return x