import sys import rpy from pylab import gca, figure, subplot from scipy import * from lpls import * import rpy_go sys.path.append("../../fluents") # home of dataset sys.path.append("../../fluents/lib") # home of cx_stats import dataset import cx_stats from plots_lpls import plot_corrloads ######## DATA ########## # full smoker data DX = dataset.read_ftsv(open("../../data/smokers-full/Xfull.ftsv")) DY = dataset.read_ftsv(open("../../data/smokers-full/Yg.ftsv")) Y = DY.asarray().astype('d') # select subset genes by SAM rpy.r.library("siggenes") rpy.r.library("qvalue") data = DX.asarray().T # data = data[:100,:] rpy.r.assign("data", data) cl = dot(DY.asarray(), diag([1,2,3])).sum(1) rpy.r.assign("cl", cl) rpy.r.assign("B", 20) # Perform a SAM analysis. print "Starting SAM" sam = rpy.r('sam.out<-sam(data=data,cl=cl,B=B,rand=123)') print "SAM done" # Compute the q-values of the genes. qq = rpy.r('qobj<-qvalue(sam.out@p.value)') qvals = asarray(qq['qvalues']) # cut off cutoff = 2 index = where(qvals0: raise valueError("NANs in tmat") # Z-matrix #Z, newind = rpy_go.genego_matrix(terms, tmat, gene_ids, terms,func=mean) #Z = Z.T Z1 = rpy_go.genego_sim(gene2goterms,gene_ids,terms,rpytmat1,go_term_sim="OA",term_sim=meth) #### do another meth = methods[4] rpytmat = rpy.with_mode(rpy.NO_CONVERSION, rpy.r.getTermSim)(terms, method=meth,verbose=False) tmat = rpy.r.assign("haha", rpytmat) # check if all terms where found nanindex = where(isnan(tmat[:,0]))[0] if len(nanindex)>0: raise valueError("NANs in tmat") # Z-matrix #Z, newind = rpy_go.genego_matrix(terms, tmat, gene_ids, terms,func=mean) #Z = Z.T Z = rpy_go.genego_sim(gene2goterms,gene_ids,terms,rpytmat,go_term_sim="OA",term_sim=meth) # update data (X) matrix #newind = [gene2ind[gene] for gene in gene_ids] newind = DX.get_indices('gene_ids', gene_ids) Xr = X[:,newind] #new_gene_ids = asarray(gene_ids)[newind] ######## LPLSR ######## print "LPLSR ..." a_max = 5 aopt = 2 alpha=.6 T, W, P, Q, U, L, K, B, b0, evx, evy, evz = nipals_lpls(Xr,Y,Z, a_max, alpha) # Correlation loadings dx,Rx,rssx = correlation_loadings(Xr, T, P) dx,Ry,rssy = correlation_loadings(Y, T, Q) cadz,Rz,rssz = correlation_loadings(Z.T, W, L) # Prediction error rmsep , yhat, class_error = cv_lpls(Xr, Y, Z, a_max, alpha=alpha) alpha_check=False if alpha_check: Alpha = arange(0.01, 1, .1) Rmsep,Yhat, CE = [],[],[] for a in Alpha: rmsep , yhat, ce = cv_lpls(Xr, Y, Z, a_max, alpha=alpha) Rmsep.append(rmsep) Yhat.append(yhat) CE.append(ce) Rmsep = asarray(Rmsep) Yhat = asarray(Yhat) CE = asarray(CE) figure(200) # Significance Hotellings T Wx, Wz, Wy, = jk_lpls(Xr, Y, Z, aopt) Ws = W*apply_along_axis(norm, 0, T) tsqx = cx_stats.hotelling(Wx, Ws[:,:aopt]) tsqz = cx_stats.hotelling(Wz, L[:,:aopt]) ## plots ## figure(1) #rmsep bar_w = .2 bar_col = 'rgb'*5 m = Y.shape[1] for a in range(m): bar(arange(a_max)+a*bar_w+.1, rmsep[:,a], width=bar_w, color=bar_col[a]) ylim([rmsep.min()-.05, rmsep.max()+.05]) title('RMSEP') figure(2) for a in range(m): bar(arange(a_max)+a*bar_w+.1, class_error[:,a], width=bar_w, color=bar_col[a]) ylim([class_error.min()-.05, class_error.max()+.05]) title('Classification accuracy') figure(3) # Hypoid correlations plot_corrloads(Rz, pc1=0, pc2=1, s=tsqz/10.0, c='b', zorder=5, expvar=evz, ax=None) ax = gca() ylabels = DY.get_identifiers('_cat', sorted=True) plot_corrloads(Ry, pc1=0, pc2=1, s=150, c='g', zorder=5, expvar=evy, ax=ax,labels=ylabels) figure(3) subplot(221) ax = gca() plot_corrloads(Rx, pc1=0, pc2=1, s=tsqx/2.0, c='b', zorder=5, expvar=evx, ax=ax) # title('X correlation') subplot(222) ax = gca() plot_corrloads(Ry, pc1=0, pc2=1, s=150, c='g', zorder=5, expvar=evy, ax=ax) #title('Y correlation') subplot(223) ax = gca() plot_corrloads(Rz, pc1=0, pc2=1, s=tsqz/10.0, c='r', zorder=5, expvar=evz, ax=ax) #title('Z correlation') subplot(224) plot(arange(len(evx)), evx, 'b', label='X', linewidth=2) plot(evy, 'g', label='Y', linewidth=2) plot(evz, 'r', label='Z', linewidth=2) legend(loc=2) ylabel('Explained variance') xlabel('Component') show()