import pylab import matplotlib import networkx as nx import scipy import rpy def plot_corrloads(R, pc1=0,pc2=1,s=20, c='b', zorder=5,expvar=None,ax=None,drawback=True, labels=None, **kwds): """ Correlation loading plot.""" # background if ax==None or drawback==True: radius = 1 center = (0,0) c100 = matplotlib.patches.Circle(center,radius=radius, facecolor='gray', alpha=.1, zorder=1) c50 = matplotlib.patches.Circle(center, radius=radius/2.0, facecolor='gray', alpha=.1, zorder=2) ax = pylab.gca() ax.add_patch(c100) ax.add_patch(c50) ax.axhline(lw=1.5,color='k') ax.axvline(lw=1.5,color='k') # corrloads ax.scatter(R[:,pc1], R[:,pc2], s=s, c=c,zorder=zorder, **kwds) ax.set_xlim([-1,1]) ax.set_ylim([-1,1]) if expvar!=None: xstring = "Comp: %d expl.var: %.1f " %(pc1+1, expvar[pc1]) pylab.xlabel(xstring) ystring = "Comp: %d expl.var.: %.1f " %(pc2+1, expvar[pc2]) pylab.ylabel(ystring) if labels!=None: assert(len(labels)==R.shape[0]) for name, r in zip(labels, R): pylab.text(r[pc1], r[pc2], " " + name) #pylab.show() def dag(terms, ontology): rpy.r.library("GOstats") __parents = {'bp' : rpy.r.GOBPPARENTS, 'mf' : rpy.r.GOMFPARENTS, 'cc' : rpy.r.GOCCPARENTS} gograph = rpy.r.GOGraph(terms, __parents.get(ontology.lower())) dag = rpy.r.edges(gograph) #setattr(dag, "_ontology", ontology) return dag def plot_dag(dag, node_color='b', node_size=30,with_labels=False,nodelist=None,pos=None): rpy.r.library("GOstats") dag_name = "GO-bp" # networkx does not play well with colon in node names clean_edges = {} for head, neigb in dag.items(): head = head.replace(":", "_") nei = [i.replace(":", "_") for i in neigb] clean_edges[head] = nei if pos==None: G = nx.from_dict_of_lists(clean_edges, nx.DiGraph(name=dag_name)) pos = nx.pydot_layout(G, prog='dot') pos_new = {} for k, v in pos.items(): x,y = v k = k.replace("_", ":") pos_new[k] = (x, -y) pos = pos_new G = nx.from_dict_of_lists(dag, nx.Graph(name=dag_name)) if len(node_color)>1: assert(len(node_color)==len(nodelist)) nx.draw_networkx(G,pos, with_labels=with_labels, node_size=node_size, node_color=node_color, nodelist=nodelist) return pos def plot_ZXcorr(gene_ids, term_ids, gene2go, X, D, scale=True): """ Plot correlation/covariance between genes as a function of semantic difference. input: X (n, p) data matrix D (p, p) gene-gene sematic similarity matrix """ D = scipy.corrcoef(X) term2ind = dict(enumerate(term_ids)) for i, gene_i in enumerate(gene_ids): for j, gene_j in enumerate(gene_ids): if j